Poligon: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) →Nama dan jenis: pbtj; tambahkan untuk penamaan menggunakan awalan "segi-". |
Dedhert.Jr (bicara | kontrib) →Sejarah: pbtj (termasuk sudut luar, dan perlu sedikit waktu untuk perbaikan) |
||
Baris 39:
[[Berkas:Winkelsumme-polygon.svg|jmpl|Segi-<math>n</math> dibagi menjadi <math>n-2</math> segitiga.]]
Sebarang poligon memiliki banyak sudut yang sama dengan banyaknya sisi. Masing-masing sudut di poligon memiliki beberapa sudut. Dua sudut yang terpenting, di antaranya:
* '''[[Sudut dalam]]''' – Jumlah dari sudut dalam segi-<math>n</math> sederhana sama dengan <math>(n-2) \times \pi</math> [[radian]] (atau dalam bentuk [[derajat (sudut)|derajat]], <math>(n-2) \times 180^\circ</math>). Ini dikarenakan sebarang segi-''<math>n</math>'' sederhana (poligon yang memiliki ''<math>n</math>'' sisi) dapat dipandang mempunyai <math>n-2</math> segitiga, sehingga jumlah dari masing-masing sudut sama dengan π radian atau 180 derajat. Ukuran dari sebarang sudut dalam dari segi-''<math>n</math>'' beraturan cembung bernilai <math>\left(1-\tfrac{2}{n}\right)\pi</math> radian atau <math>180-\tfrac{360}{n}</math> derajat. Sudut dalam dari [[poligon bintang]] beraturan pertama kali dipelajari oleh Poinsot. Pada makalah tersebut, Poinsot menjelaskan empat [[Polihedron Kepler–Poinsot|polihedron bintang beraturan]] sebagai berikut: untuk sebuah segi-<math>\tfrac{p}{q}</math> (sebuah segi-<math>p</math> dengan kepadatan pusat <math>q</math>), maka masing-masing sudut dalam bernilai <math>\tfrac{\pi(p-2q)}{p}</math> radian atau <math>\tfrac{180(p-2q)}{p}</math> derajat.<ref>{{cite book |last=Kappraff |first=Jay |title=Luar biasa: tur berpemandu melintasi alam, mitos, dan angka |publisher=World Scientific |year=2002 |page=258 |isbn= 978-981-02-4702-7 |url=https://books.google.com/books?id=vAfBrK678_kC&pg=PA256&dq=star+polygon}}</ref>
* '''[[Sudut luar]]''' – Sudut luar adalah [[
=== Luas ===
Baris 107:
== Perumuman ==
Gagasan dari poligon diperumum melalui berbagai cara. Ada beberapa perumuman dari poligon yang lebih penting, di antaranya:
* [[Poligon bola]] adalah poligon yang mempunyai sirkuit dari busur lingkaran besar (yakni, sisi) dan titik pojok pada permukaan bola. Hal ini memungkinkan [[digon]], poligon yang hanya memiliki dua sisi dan dua titik pojok, yang tidak mungkin dilakukan pada bidang datar. Poligon bola memainkan peran penting dalam [[kartografi]] (pembuatan peta) dan dalam [[konstruksi Wythoff]] dari [[
* [[Poligon pencong]] tidak terletak di bidang datar, melainkan di garis zigzag dalam dimensi tiga atau lebih. [[Poligon Petrie]] dari politop beraturan adalah contoh yang terkenal.
* [[Apeirogon]] adalah sebuah poligon yang mempunyai barisan tak hingga dari sisi dan sudut. Barisan tersebut tidak tertutup tetapi tidak punyai titik akhir, sebab barisan tersebut secara tak langsung memperluas ke dua arah.
Baris 234:
== Sejarah ==
[[Berkas:Fotothek df tg 0003352 Geometrie %5E Dreieck %5E Viereck %5E Vieleck %5E Winkel.jpg|jmpl|Gambar
Poligon telah lama dikenal sejak zaman dahulu. Poligon
{{Clear}}
== Referensi ==
{{Reflist}}
|