Logaritma: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib)
Tag: Suntingan visualeditor-wikitext
Bot5958 (bicara | kontrib)
k Perbaikan untuk PW:CW (Fokus: Minor/komestika; 1, 48, 64) + genfixes
Baris 1:
[[Berkas:Logarithm_plotsLogarithm plots.png|jmpl|300x300px|Grafik fungsi logaritma dengan tiga bilangan pokok yang umum. Titik khusus {{math|<sup>''b''</sup>log&thinsp;''b'' {{=}} 1}} diperlihatkan oleh garis bertitik, dan semua kurva fungsi memotong di {{math|1=<sup>''b''</sup>log&thinsp;1 = 0}}.]]{{Operasi aritmetika}}
Dalam [[matematika]], '''logaritma''' merupakan [[fungsi invers]] dari [[eksponensiasi]]. Dengan kata lain, logaritma dari {{mvar|x}} merupakan [[eksponen]] dengan [[Bilangan pokok|bilangan pokok]] {{mvar|b}} yang dipangkatkan dengan bilangan konstan lain agar memperoleh nilai {{mvar|x}}. Kasus sederhana dalam logaritma adalah menghitung jumlah munculnya faktor yang sama dalam perkalian berulang. Sebagai contoh, {{math|1000 {{=}} 10 × 10 × 10 {{=}} 10<sup>3</sup>}} dibaca, "logaritma 1000 dengan bilangan pokok 10 sama dengan 3" atau dinotasikan sebagai {{math|<sup>10</sup>log&thinsp;(1000) {{=}} 3}}. Logaritma dari {{mvar|x}} dengan ''bilangan pokok'' {{mvar|b}} dilambangkan {{math|<sup>''b''</sup>log&thinsp;''x''}}. Terkadang logaritma dilambangkan sebagai {{math|log<sub>''b''</sub>&thinsp;(''x'')}} atau tanpa menggunakan tanda kurung, {{math|log<sub>''b''</sub>&thinsp;''x''}}, atau bahkan tanpa menggunakan bilangan pokok khusus, {{math|log&thinsp;''x''}}.
 
Ada tiga bilangan pokok logaritma yang umum beserta kegunaannya. Logaritma dengan bilangan pokok {{math|10}} ({{math|1=''b'' = 10}}) disebut sebagai [[logaritma umum]], yang biasanya dipakai dalam ilmu sains dan rekayasa. Logaritma dengan dengan bilangan pokok [[E (konstanta matematika)|bilangan {{Math|''e''}}]] ({{math|''b'' ≈ 2.718}}) disebut sebagai [[logaritma alami]], yang dipakai dengan luas dalam matematika dan fisika, karena dapat mempermudah perhitungan [[integral]] dan [[turunan]]. Logaritma dengan bilangan pokok {{math|2}} ({{math|1=''b'' = 2}}) disebut sebagai [[logaritma biner]], yang seringkali dipakai dalam [[ilmu komputer]].
Baris 169:
 
== Tabel logaritma, mistar hitung, dan penerapan bersejarah ==
[[Berkas:Logarithms_Britannica_1797Logarithms Britannica 1797.png|ka|jmpl|360x360px|Penjelasan logaritma dalam ''[[Encyclopædia Britannica]]'' pada tahun 1797.]]
Dengan menyederhanakan perhitungan yang rumit sebelum adanya mesin hitung komputer, logaritma berkontribusi pada kemajuan pengetahuan, khususnya [[astronomi]]. Logaritma sangat penting terhadap kemajuan dalam [[Ilmu ukur wilayah|survei]], [[navigasi benda langit]], dan cabang lainnya. [[Pierre-Simon Laplace]] menyebut logaritma sebagai
 
Baris 210:
=== Mistar hitung ===
Penerapan penting lainnya adalah [[mistar hitung]], sepasang skala yang dibagi secara logaritmik yang digunakan dalam perhitungan. Adapun skala logaritmik yang tidak memiliki sorong, [[mistar Gunter]], ditemukan tak lama setelah penemuan Napier dan disempurnakan oleh [[William Oughtred]] untuk menciptakan sepasang skala logaritmik yang dapat dipindahkan terhadap satu sama lain, yaitu mistar hitung. Angka yang ditempatkan pada skala hitung pada jarak sebanding dengan selisih antara logaritmanya. Menggeser skala atas dengan tepat berarti menambahkan logaritma secara mekanis, seperti yang diilustrasikan berikut ini:
[[Berkas:Slide_rule_example2_with_labelsSlide rule example2 with labels.svg|al=alt=A slide rule: two rectangles with logarithmically ticked axes, arrangement to add the distance from 1 to 2 to the distance from 1 to 3, indicating the product 6.|pus|jmpl|550x550px|Penggambaran skema mengenai mistar hitung. Dimulai dari 2 pada skala di bawah, lalu tambahkan dengan jarak ke 3 pada skala atas agar mencapai hasil kali 6. Mistar hitung bekerja karena ditandai sedemikian rupa sehingga jarak dari 1 ke {{math|1=''x''}} sebanding dengan logaritma {{math|1=''x''}}.]]
Sebagai contoh, dengan menambahkan jarak dari 1 ke 2 pada skala di bagian bawah ke jarak dari 1 ke 3 pada skala di bagian atas menghasilkan hasil kali 6, yang dibacakan di bagian bawah. Mistar hitung adalah sebuah alat menghitung yang penting bagi para insinyur dan ilmuwan hingga tahun 1970-an, karena dengan mengorbankan ketepatan nilai memungkinkan perhitungan yang jauh lebih cepat daripada teknik berdasarkan tabel.<ref name="ReferenceA2">{{Citation|last1=Maor|first1=Eli|title=E: The Story of a Number|publisher=[[Princeton University Press]]|isbn=978-0-691-14134-3|year=2009|at=bagian 1, 13}}</ref>
 
Baris 231:
 
=== Grafik fungsi logaritma ===
[[Berkas:Logarithm_inversefunctiontoexpLogarithm inversefunctiontoexp.svg|al=The graphs of two functions.|ka|jmpl|Grafik fungsi logaritma {{math|<sup>''b''</sup>log&thinsp;(''x'')}} (berwarna biru) diperoleh dengan [[Refleksi (matematika)|mencerminkan]] grafik fungsi {{math|''b''<sup>''x''</sup>}} (berwarna merah) di garis diagonal({{math|1=''x'' = {{mvar|y}}}}).]]
Seperti yang dibahas sebelumnya, fungsi {{math|<sup>''b''</sup>log}} invers terhadap fungsi eksponensial <math>x\mapsto b^x</math>. Karena itu, [[Grafik fungsi|grafiknya]] berkorespondensi dengan satu sama lain saat menukar koordinat-{{mvar|x}} dan koordinat-{{mvar|y}} (atau saat melakukan pencerminan di garis diagonal {{Math|1=''x'' = ''y''}}), seperti yang diperlihatkan sebagai berikut: sebuah titik {{math|1=(''t'', ''u'' = {{mvar|b}}<sup>''t''</sup>)}} pada grafik dari {{Mvar|f}} menghasilkan sebuah titik {{math|1=(''u'', ''t'' = <sup>''b''</sup>log&thinsp;''u'')}} pada grafik logaritma dan sebaliknya. Akibatnya, {{math|<sup>''b''</sup>log&thinsp;(''x'')}} [[Limit barisan|divergen menuju takhingga]] (dalam artian semakin besar dari setiap bilangan yang diberikan) jika {{mvar|x}} naik menuju takhingga, asalkan {{mvar|b}} lebih besar dari satu. Pada kasus tersebut, {{math|<sup>''b''</sup>log(''x'')}} merupakan [[fungsi menaik]]. Sedangkan untuk kasus {{math|''b'' < 1}}, {{math|<sup>''b''</sup>log&thinsp;(''x'')}} cenderung menuju ke negatif takhingga. Ketika {{mvar|x}} mendekati nol, {{math|<sup>''b''</sup>log&thinsp;''x''}} menuju ke negatif takhingga untuk {{math|''b'' > 1}} dan menuju ke plus takhingga untuk {{math|''b'' < 1}}.
 
=== Turunan dan antiturunan ===
[[Berkas:Logarithm_derivativeLogarithm derivative.svg|al=Sebuah grafik fungsi logaritma dan sebuah garis yang menyinggungnya di sebuah titik.|ka|jmpl|220x220px|Grafik fungsi [[logaritma alami]] (berwarna hijau) beserta garis singgungnya di {{math|''x'' {{=}} 1,5}} (berwarna hitam)]]
Sifat analitik tentang fungsi adalah melalui fungsi inversnya.<ref name="LangIII.3" /> Jadi, ketika {{math|1=''f''(''x'') = {{mvar|b}}<sup>''x''</sup>}} adalah fungsi kontinu dan [[Fungsi terdiferensialkan|terdiferensialkan]], maka {{math|<sup>''b''</sup>log&thinsp;''y''}} fungsi kontinu dan terdiferensialkan juga. Penjelasan kasarnya, sebuah fungsi kontinu adalah terdiferensialkan jika grafiknya tidak mempunyai "ujung" yang tajam. Lebih lanjut, ketika [[turunan]] dari {{math|''f''(''x'')}} menghitung nilai {{math|ln(''b'') ''b''<sup>''x''</sup>}} melalui sifat-sifat [[fungsi eksponensial]], [[aturan rantai]] menyiratkan bahwa turunan dari {{math|<sup>''b''</sup>log&thinsp;''x''}} dirumuskan sebagai <ref name="LangIV.2" /><ref>{{citation|work=Wolfram Alpha|title=Calculation of ''d/dx(Log(b,x))''|publisher=[[Wolfram Research]]|access-date=15 Maret 2011|url=http://www.wolframalpha.com/input/?i=d/dx(Log(b,x))}}</ref>
 
Baris 255:
 
=== Representasi integral mengenai fungsi logaritma ===
[[Berkas:Natural_logarithm_integralNatural logarithm integral.svg|al=A hyperbola with part of the area underneath shaded in grey.|jmpl|[[Logaritma alami|Logaritma natural]] dari ''{{Mvar|t}}'' merupakan luas yang diwarnai di bawah grafik fungsi {{math|1=''f''(''x'') = {{sfrac|1=1|2=''x''}}}}.]]
[[Logaritma alami]] dari {{Mvar|t}} dapat didefinisikan sebagai [[integral tentu]]:
 
Baris 265:
 
Persamaan (1) membagi integral menjadi dua bagian, sementara (2) mengubah variabel {{Math|''w''}} menjadi {{Math|{{sfrac|1=''x''|2=''t''}}}}. Pada ilustrasi dibawah, pembagian integral tersebut dapat disamakan dengan pembagian luasnya menjadi bagian berwarna kuning dan biru. Dengan mengukur luas berwarna biru kembali secara vertikal melalui faktor {{Mvar|t}} dan menyusutnya melalui faktor yang sama secara horizontal tidak mengubah ukuran luasnya. Dengan memindahkan daerah biru ke daerah kuning, luasnya menyesuaikan grafik fungsi {{math|1=''f''(''x'') = {{sfrac|1=1|2=''x''}}}} lagi. Oleh karena itu, luas biru di sebelah kiri, yang merupakan integral dari fungsi {{math|''f''(''x'')}} dengan interval dari {{Mvar|t}} hingga {{Mvar|tu}} sama dengan integral dari fungsi yang sama dengan interval 1 hingga {{Mvar|u}}. Hal ini membenarkan persamaan &nbsp;(2) melalui bukti geometri lainnya.
[[Berkas:Natural_logarithm_product_formula_proven_geometricallyNatural logarithm product formula proven geometrically.svg|al=Fungsi hiperbola digambarkan dua kali. Luas di bawah fungsi dibagi menjadi bagian yang berbeda.|pus|jmpl|500x500px|Sebuah bukti visual tentang rumus hasil kali dari logaritma natural]]
Rumus pangkat {{math|1=ln(''t''<sup>''r''</sup>) = ''r'' ln(''t'')}} dapat real dalam cara yang serupa:
 
Baris 288:
 
== Perhitungan ==
[[Berkas:Logarithm_keysLogarithm keys.jpg|jmpl|Tombol logaritma (LOG sebagai bilangan pokok 10 dan LN sebagai bilangan pokok {{mvar|e}}) pada sebuah kalkulator grafik [[TI-83 series|TI-83 Plus]].]]
Logaritma merupakan alat hitung yang mudah pada beberapa kasus, seperti {{math|1=<sup>10</sup>log&thinsp;1000 = 3}}. Logaritma pada umumnya dapat dihitung melalui [[deret kuasa]] atau [[rata-rata aritmetika–geometrik]], atau didapatkan kembali dari tabel logaritma (sebelum adanya perhitungan logaritma) yang menyediakan ketepatan nilai konstan.<ref>{{Citation|last1=Muller|first1=Jean-Michel|title=Elementary functions|publisher=Birkhäuser Boston|location=Boston, MA|edition=2nd|isbn=978-0-8176-4372-0|year=2006}}, bagian 4.2.2 (hlm. 72) dan 5.5.2 (hlm. 95)</ref><ref>{{Citation|last1=Hart|last2=Cheney|last3=Lawson|year=1968|publisher=John Wiley|location=New York|title=Computer Approximations|series=SIAM Series in Applied Mathematics|display-authors=etal}}, bagian 6.3, hlm.&nbsp;105–11</ref> [[Metode Newton]], sebuah metode berulang yang menyelesaikan persamaan melalui hampiran, juga dapat dipakai untuk menghitung logaritma, karena fungsi inversnya (yaitu fungsi eksponensial), dapat dihitung dengan cepat.<ref>{{Citation|last1=Zhang|first1=M.|last2=Delgado-Frias|first2=J.G.|last3=Vassiliadis|first3=S.|title=Table driven Newton scheme for high precision logarithm generation|doi=10.1049/ip-cdt:19941268|journal=IEE Proceedings - Computers and Digital Techniques|issn=1350-2387|volume=141|year=1994|issue=5|pages=281–92}}, bagian 1 for an overview</ref> Dengan melihat tabel logaritma, metode yang mirip dengan [[CORDIC]] dapat dipakai untuk menghitung logaritma hanya dengan menggunakan operasi penambahan dan [[Geseran aritmetika|geseran bit]].<ref>{{Citation|url=https://semanticscholar.org/paper/b3741168ba25f23b694cf8f9c80fb4f2aabce513|first=J.E.|last=Meggitt|title=Pseudo Division and Pseudo Multiplication Processes|journal=IBM Journal of Research and Development|date=April 1962|doi=10.1147/rd.62.0210|volume=6|issue=2|pages=210–26|s2cid=19387286}}</ref><ref>{{Citation|last=Kahan|first=W.|author-link=William Kahan|title=Pseudo-Division Algorithms for Floating-Point Logarithms and Exponentials|date=20 May 2001}}</ref> Terlebih lagi, [[Logaritma biner#Algoritma|algoritma dari logaritma biner]] menghitung {{math|lb(''x'')}} [[Rekursi|secara berulang]] berdasarkan penguadratan {{mvar|x}} yang berulang dan menggunakan ekspresi
 
Baris 296:
 
==== Deret Taylor ====
[[Berkas:Taylor_approximation_of_natural_logarithmTaylor approximation of natural logarithm.gif|al=An animation showing increasingly good approximations of the logarithm graph.|jmpl|Deret Taylor dari {{math|ln(''z'')}} berpusat di {{math|''z'' {{=}} 1}}. Animasi berikut memperlihatkan 10 hampiran pertama beserta dengan hampiran yang ke-99 dan yang ke-100. Hampiran tersebut tidak konvergen karena melebihi jarak 1 dari pusatnya.]]
Untuk setiap bilangan {{mvar|z}} yang memenuhi sifat {{math|0 < ''z'' ≤ 2}}, maka berlaku rumus:{{refn|Deret yang sama berlaku untuk nilai utama dari logaritma kompleks untuk bilangan kompleks {{mvar|z}} yang memenuhi {{math|{{!}}''z'' − 1{{!}} < 1}}.|group=nb}}<ref name="AbramowitzStegunp.68">{{Harvard citations|editor1-last=Abramowitz|editor2-last=Stegun|year=1972|nb=yes|loc=hlm. 68}}</ref>
 
Baris 370:
=== Penerapannya dalam skala logaritmik ===
{{Main|Skala logaritmik}}
[[Berkas:Germany_HyperinflationGermany Hyperinflation.svg|al=Grafik yang menggambarkan nilai dari waktu ke waktu. Melalui skala logaritma, garis pada grafik memperlihatkan nilainya yang menaik dengan cepat.|jmpl|Grafik logaritma memperlihatkan kenaikan harga mata uang [[Mark Jerman|''goldmark'']] di [[Papiermark Jerman|Papiermark]] selama berlangsungnya [[Inflasi di Republik Weimar|hiperinflasi di Jerman pada tahun 1920-an]]|kiri]]
Satuan kuantitas dalam ilmiah seringkali dinyatakan sebagai logaritma dari kuantitas lain, dengan menggunakan ''skala logaritmik''. Sebagai contoh, [[desibel]] merupakan [[Satuan|satuan pengukuran]] yang dikaitkan dengan perhitungan dari [[Tingkatan (kuantitas logaritma)|kuantitas]] [[skala logaritmik]]. Penguat desibel memberikan 10&nbsp;kalinya logaritma biasa dari [[Rasio|rasio]] [[Daya (fisika)|daya]] atau 20&nbsp;kalinya logaritma biasa dari rasio [[Tegangan listrik|tegangan]]. Satuan inilah yang dipakai untuk mengukur rugi tingkatan ketegangan saat mentransmisi sinyal elektrik,<ref>{{Citation|last1=Bakshi|first1=U.A.|title=Telecommunication Engineering|publisher=Technical Publications|location=Pune|isbn=978-81-8431-725-1|year=2009|url={{google books |plainurl=y |id=EV4AF0XJO9wC|page=A5}}}}, bagian 5.2</ref> yang bertujuan untuk menjelaskan tingkatan kekuatan aras daya suara dalam [[akustik]],<ref>{{Citation|last1=Maling|first1=George C.|editor1-last=Rossing|editor1-first=Thomas D.|title=Springer handbook of acoustics|publisher=[[Springer-Verlag]]|location=Berlin, New York|isbn=978-0-387-30446-5|year=2007|chapter=Noise}}, bagian 23.0.2</ref> serta mengukur [[absorbansi|penyerapan]] cahaya dalam bidang [[Spektrometer|spektrometri]] dan [[optika]]. Selain itu, desibel juga dipakai dalam [[nisbah sinyal-derau]] yang menjelaskan seberapa banyak [[Derau (elektronik)|derau]] dibandingkan dengan [[Sinyal (elektrik)|sinyal]] yang berguna.<ref>{{Citation|last1=Tashev|first1=Ivan Jelev|title=Sound Capture and Processing: Practical Approaches|publisher=[[John Wiley & Sons]]|location=New York|isbn=978-0-470-31983-3|year=2009|url={{google books |plainurl=y |id=plll9smnbOIC|page=48}}|page=98}}</ref> Mirip dengan tadi, [[nisbah puncak sinyal terhadap derau|nisbah puncak sinyal-derau]] biasanya dipakai menilai kualitas suara dan metode [[pemampatan citra]] melalui logaritma.<ref>{{Citation|last1=Chui|first1=C.K.|title=Wavelets: a mathematical tool for signal processing|publisher=[[Society for Industrial and Applied Mathematics]]|location=Philadelphia|series=SIAM monographs on mathematical modeling and computation|isbn=978-0-89871-384-8|year=1997|url={{google books |plainurl=y |id=N06Gu433PawC|page=180}}}}</ref>
 
Kekuatan gempa bumi diukur dengan mengambil logaritma umum dari energi yang dipancarkan saat terjadinya gempa dalam satuan [[skala magnitudo momen]] atau [[skala Richter|skala magnitudo Ritcher]]. Sebagai contoh, gempa berkekuatan 5,0 melepaskan 32&nbsp;kali {{math|(10<sup>1,5</sup>)}} dan gempa berkekuatan 6,0 melepaskan 1000&nbsp;kali{{math|(10<sup>3</sup>)}} energi berkekuatan 4,0.<ref>{{Citation|last1=Crauder|first1=Bruce|last2=Evans|first2=Benny|last3=Noell|first3=Alan|title=Functions and Change: A Modeling Approach to College Algebra|publisher=Cengage Learning|location=Boston|edition=4th|isbn=978-0-547-15669-9|year=2008}}, bagian 4.4.</ref> Skala logaritmik juga dipakai dalam [[Magnitudo semu|magnitudo kentara]] untuk mengukur kecerahan bintang.<ref>{{Citation|last1=Bradt|first1=Hale|title=Astronomy methods: a physical approach to astronomical observations|publisher=[[Cambridge University Press]]|series=Cambridge Planetary Science|isbn=978-0-521-53551-9|year=2004}}, bagian 8.3, hlm.&nbsp;231</ref> Dalam [[kimia]], negatif dari logaritma desimal, yang disebut sebagai '''{{vanchor|kologaritma}}''' desimal, ditunjukkan dengan huruf "p".<ref name="Jens">{{cite journal|author=Nørby, Jens|year=2000|title=The origin and the meaning of the little p in pH|journal=Trends in Biochemical Sciences|volume=25|issue=1|pages=36–37|doi=10.1016/S0968-0004(99)01517-0|pmid=10637613}}</ref> Sebagai contoh, [[pH]] merupakan kologaritma desimal dari [[Aktivitas termodinamika|keaktifan]] dari [[ion]] berbentuk [[hidrogen]] {{chem|H|+|}} yang terbentuk dari air, [[hidronium]].<ref>{{Citation|author=IUPAC|title=Compendium of Chemical Terminology ("Gold Book")|edition=2nd|editor=A. D. McNaught, A. Wilkinson|publisher=Blackwell Scientific Publications|location=Oxford|year=1997|url=http://goldbook.iupac.org/P04524.html|isbn=978-0-9678550-9-7|doi=10.1351/goldbook|author-link=IUPAC|doi-access=free}}</ref> Keaktifan dari ion hidronium dalam air yang netral bernilai 10<sup>−7</sup>&nbsp;[[Molaritas|mol·L<sup>−1</sup>]], sehingga nilai pH adalah 7. Contoh lainnya, nilai pH dari asam cuka biasanya sekitar 3. Perbedaan nilai sebesar 4 sesuai dengan rasio 10<sup>4</sup> berdasarkan aktivitasnya, yaitu nilai dari aktivitas ion hidronium cuka sekitar 10<sup>−3</sup> mol·L<sup>−1</sup>.
Baris 399:
Logaritma dipakai untuk menghitung [[pendugaan kemungkinan maksimum|estimasi kemungkinan maksimum]] dari [[model statistika]] parametrik. [[Fungsi kemungkinan]] pada model tersebut bergantung setidaknya satu [[model parametrik|parameter]] yang harus diestimasi. Nilai maksimum dari fungsi kemungkinan muncul di nilai parameter yang sama sebagai nilai maksimum logaritma kemungkinan (atau disebut ''log&nbsp;likelihood''), karena logaritma merupakan fungsi menaik. ''Log-likelihood'' merupakan teknik yang memaksimumkan fungsi dengan mudah, khususnya untuk kemungkinan yang dikali mengenai variabel acak [[Independen (peluang)|independen]].<ref>{{Citation|last1=Rose|first1=Colin|last2=Smith|first2=Murray D.|title=Mathematical statistics with Mathematica|publisher=[[Springer-Verlag]]|location=Berlin, New York|series=Springer texts in statistics|isbn=978-0-387-95234-5|year=2002}}, bagian 11.3</ref>
 
[[Hukum Benford]] menjelaskan kemungkinan digit dalam [[Himpunan data|himpunan data]] yang banyak, contohnya seperti tinggi bangunan. Menurut hukum Benford, kemungkinan bahwa digit desimal pertama suatu item dalam sampel data adalah {{Mvar|d}} (yang berkisar dari 1 hingga 9) sama dengan {{math|<sup>10</sup>log&thinsp;(''d'' + 1) − <sup>10</sup>log&thinsp;(''d'')}}, ''tanpa memperhatikan'' satuan pengukuran.<ref>{{Citation|last1=Tabachnikov|first1=Serge|author-link1=Sergei Tabachnikov|title=Geometry and Billiards|publisher=[[American Mathematical Society]]|location=Providence, RI|isbn=978-0-8218-3919-5|year=2005|pages=36–40}}, bagian 2.1</ref> Jadi, sekitar 30% data dapat diduga mempunyai 1 sebagai digit pertama, 18% dimulai dengan 2, dst. Penyimpangan dari hukum Benford dihitung oleh para akuntan untuk membantu mendeteksi penipuan data akuntansi.<ref>{{citation|title=The Effective Use of Benford's Law in Detecting Fraud in Accounting Data|first1=Cindy|last1=Durtschi|first2=William|last2=Hillison|first3=Carl|last3=Pacini|url=http://faculty.usfsp.edu/gkearns/Articles_Fraud/Benford%20Analysis%20Article.pdf|volume=V|pages=17–34|year=2004|journal=Journal of Forensic Accounting|archive-url=https://web.archive.org/web/20170829062510/http://faculty.usfsp.edu/gkearns/Articles_Fraud/Benford%20Analysis%20Article.pdf|archive-date=29 Agustus 2017|access-date=28 Mei 2018}}</ref>
 
=== Penerapannya dalam kompleksitas perhitungan ===
Cabang dalam [[ilmu komputer]] yang mempelajari [[kompleksitas waktu|performa]] dari suatu [[algoritma]] dalam menyelesaikan persoalan atau masalah tertentu disebut [[analisis algoritma]].<ref name="Wegener">{{Citation|last1=Wegener|first1=Ingo|title=Complexity theory: exploring the limits of efficient algorithms|publisher=[[Springer-Verlag]]|location=Berlin, New York|isbn=978-3-540-21045-0|year=2005}}, hlm. 1–2</ref> Logaritma sangat penting dalam menjelaskan algoritma tersebut dengan [[Divide and Conquer|membagi suatu masalah]] menjadi lebih kecil, serta menghubungkan penyelesaian dari submasalah.<ref>{{Citation|last1=Harel|first1=David|last2=Feldman|first2=Yishai A.|title=Algorithmics: the spirit of computing|location=New York|publisher=[[Addison-Wesley]]|isbn=978-0-321-11784-7|year=2004}}, hlm.&nbsp;143</ref>
 
Sebagai contoh, cara [[algoritma pencarian biner]] ({{lang-en|1=binary searching algorithm}}) dalam mencari bilangan dalam daftar yang tersortir adalah dengan memeriksa entri tengah dan meneruskannya di sebagian sebelum atau sesudah entri tengah jika tidak ditemukan bilangannya. Umumnya, algoritma ini memerlukan perbandingan {{math|<sup>2</sup>log&thinsp;(''N'')}}, dengan {{mvar|N}} merupakan panjang daftar.<ref>{{citation|last=Knuth|first=Donald|author-link=Donald Knuth|title=The Art of Computer Programming|publisher=Addison-Wesley|location=Reading, MA|year=1998|isbn=978-0-201-89685-5|title-link=The Art of Computer Programming}}, bagian 6.2.1, hlm. 409–26</ref> Mirip dengan sebelumnya, algoritma [[Uruturut gabung|urut gabungan]]an menyortir daftar yang belum tersortir dengan membagi daftar menjadi setengah bagian dan mengurutkan daftar-daftar tersebut dahulu sebelum menggabungkan hasilnya. Algoritma urut gabungan biasanya memerlukan waktu yang [[Notasi O besar|kira-kira sebanding dengan]] {{math|''N'' · log(''N'')}}.<ref>{{Harvard citations|last=Knuth|first=Donald|year=1998|loc=bagian 5.2.4, hlm. 158–68|nb=yes}}</ref> Bilangan pokok logaritma tidak dijelaskan secara spesifik, karena hasilnya hanya berubah oleh faktor konstanta saat ada bilangan pokok lain yang sedang dipakai. Faktor konstanta biasanya diabaikan dalam analisis algoritma dalam [[Analisis algoritma#Model biaya|model biaya seragam]] ({{lang-en|1=uniform cost model}}) yang standar.<ref name="Wegener20">{{Citation|last1=Wegener|first1=Ingo|title=Complexity theory: exploring the limits of efficient algorithms|publisher=[[Springer-Verlag]]|location=Berlin, New York|isbn=978-3-540-21045-0|year=2005|page=20}}</ref>
 
Suatu fungsi&nbsp;{{math|''f''(''x'')}} dikatakan [[pertumbuhan logaritmik|bertumbuh secara logaritmik]] jika {{math|''f''(''x'')}} (setidaknya atau kira-kira) sebanding dengan logaritma dari {{mvar|x}}, namun istilah ini dipakai sebagai fungsi eksponensial dalam menjelaskan pertumbuhan organisme secara biologis.<ref>{{Citation|last1=Mohr|first1=Hans|last2=Schopfer|first2=Peter|title=Plant physiology|publisher=Springer-Verlag|location=Berlin, New York|isbn=978-3-540-58016-4|year=1995|url-access=registration|url=https://archive.org/details/plantphysiology0000mohr}}, bab 19, hlm.&nbsp;298</ref> Sebagai contoh, setiap [[bilangan asli]]&nbsp;{{mvar|N}} dapat direpresentasikan dalam [[sistem bilangan biner|bentuk bilangan biner]] yang tidak lebih dari {{math|<sup>2</sup>log&thinsp;''N'' + 1}}&nbsp;[[bit]]. Dengan kata lain, jumlah [[Memori (komputer)|memori]] diperlukan untuk menyimpan {{mvar|N}} pertumbuhan secara logaritmik dengan {{mvar|N}}.
 
=== Penerapannya dalam entropi dan ketidakteraturan ===
[[Berkas:Chaotic_Bunimovich_stadiumChaotic Bunimovich stadium.png|thumb|al=Trayektori dua partikel berbentuk oval|[[Biliar dinamis|Bola biliar]] di atas meja biliar oval. Dua partikel yang bermula pada pusat meja dengan sudut luncur yang berbeda satu derajat, akan memiliki jalur yang amat berbeda karena [[Refleksi|pemantulan]] pada pinggir meja biliar]]
 
[[Entropi]] secara umum adalah ukuran dari ketidakteraturan dari suatu sistem. Dalam [[termodinamika statistik]], sebuah entropi, disimbolkan dengan {{Math|''S''}}, dari sebuah sistem, didefinisikan dengan:
Baris 420:
 
=== Penerapannya dalam bangunan fraktal ===
[[Berkas:Sierpinski_dimensionSierpinski dimension.svg|al=Parts of a triangle are removed in an iterated way.|ka|jmpl|400x400px|Segitiga Sierpinski (di sebelah kanan) dibangun dengan menggantikan [[segitiga sama sisi]] secara berulang dengan tiga salinan dirinya yang lebih kecil.]]
Logaritma muncul dalam definiisi [[Dimensi fraktal|dimensi]] [[fraktal]].<ref>{{Citation|last1=Helmberg|first1=Gilbert|title=Getting acquainted with fractals|publisher=Walter de Gruyter|series=De Gruyter Textbook|location=Berlin, New York|isbn=978-3-11-019092-2|year=2007}}</ref> Fraktal merupakan benda-benda geometri yang menyerupai dirinya, dalam artian bahwa benda geometri tersebut mereproduksi dirinya lebih kecil, penjelasan kasarnya, di seluruh strukturnya. Contohnya seperti [[segitiga Sierpiński]], dengan [[dimensi Hausdorff]]<nowiki/>nya adalah {{math|{{sfrac|1=ln(3)|2=ln(2)}} ≈ 1,58}}, dapat diliputi dengan tiga salinan dirinya, masing-masing sisinya dibagi menjadi setengah dari panjang awalnya. Adapula gagasan dimensi fraktal berdasarkan logaritma lainnya diperoleh dengan [[Dimensi menghitung kotak|menghitung jumlah kotak]] yang diperlukan untuk meliputi frakal dalam himpunan.
 
Baris 498:
: <math>e^a=z</math>
 
disebut ''logaritma kompleks'' dari {{mvar|z}}, ketika {{mvar|z}} (dianggap sebagai) bilangan kompleks. Bilangan kompleks biasanya dinyatakan sebagai {{math|''z {{=}} x + iy''}}, dengan {{mvar|x}} dan {{mvar|y}} merupakan bilangan real dan {{mvar|i}} merupakan [[satuan imajiner]] (satuan yang dikuadratkan memberikan nilai −1). Bilangan kompleks dapat divisualisasikan melalui sebuah titik dalam [[bidang kompleks]], seperti yang diperlihatkan pada gambar berikut. [[Bilangan kompleks#Bidang kompleks polar|Bentuk polar]] menulis bilangan kompleks tak-nol&nbsp;{{mvar|z}} melalui titik [[nilai mutlak]], yang berarti jarak yang berupa bilangan bernilai real dan positif&nbsp;{{Mvar|r}} sama dengan titik {{mvar|z}} ke [[Titik nol|titik asalnya]]. Bentuk polar juga menulis sebuah sudut antara bilangan real pada sumbu-{{Math|Re}} (yakni sumbu-{{mvar|x}}) ''&nbsp;''{{Math|Re}} dan garis yang melalui titik asal dan titik {{mvar|z}}. Sudut tersebut disebut sebagai [[Argumen (bilangan kompleks)|argumen]] dari {{mvar|z}}.[[Berkas:Complex_number_illustration_multiple_argumentsComplex number illustration multiple arguments.svg|al=Sebuah ilustrasi mengenai bentuk polar: sebuah titik yang dijelaskan melalui sebuah panah atau secara ekuivalen melalui panjang dan sudutnya ke sumbu-x.|jmpl|Bentuk polar dari {{math|''z {{=}} x + iy''}}. {{mvar|φ}} dan {{mvar|φ'}} merupakan argumen dari {{mvar|z}}.]]Nilai mutlak {{mvar|r}} dari {{mvar|z}} dinyatakan sebagai
 
: <math>\textstyle r=\sqrt{x^2+y^2}.</math>
Baris 525:
 
: <math>a_k = \ln (r) + i ( \varphi + 2 k \pi ),\quad</math> untuk bilangan bulat sembarang&nbsp;{{mvar|k}}.
[[Berkas:Complex_log_domainComplex log domain.svg|al=A density plot. In the middle there is a black point, at the negative axis the hue jumps sharply and evolves smoothly otherwise.|jmpl|Cabang prinsip (-{{pi}}, {{pi}}) dari prinsip logaritma kompleks, {{math|Log(''z'')}}. Titik berwarna hitam di {{math|''z'' {{=}} 1}} berpadanan dengan nilai titik nol dan warna yang lebih cerah mengacu pada nilai mutlak lebih besar. [[Rona]] dari warna mengkodekan argumen dari {{math|Log(''z'')}}.|kiri]]
 
Dengan mengambil {{mvar|k}} sehingga {{Math|''φ'' + 2''k''{{pi}}}} ada di dalam selang yang ditentukan untuk argumen prinsip, maka {{math|''a''<sub>''k''</sub>}} disebut ''nilai prinsip'' dari logaritma, dinotasikan sebagai {{math|Log(''z'')}}. Argumen prinsip setiap bilangan real positif &nbsp;{{mvar|x}} bernilai 0, jadi {{math|Log(''x'')}} adalah sebuah bilangan real yang sama dengan logaritma (alami). Akan tetapi, rumus logaritma tentang darab dan perpangkatan bilangan di atas [[Eksponensiasi#Kegagalan identitas perpangkatan dan logaritma|tidak memberikan perumuman]] terkait nilai prinsip dari logaritma kompleks.<ref>{{Citation|last1=Wilde|first1=Ivan Francis|title=Lecture notes on complex analysis|publisher=Imperial College Press|location=London|isbn=978-1-86094-642-4|year=2006|url=https://books.google.com/books?id=vrWES2W6vG0C&q=complex+logarithm&pg=PA97}}, teorema 6.1.</ref>
 
Ilustrasi tersebut menggambarkan {{math|Log(''z'')}}, membatasi argumen {{mvar|z}} dengan interval {{open-closed|−π, π}}. Cara memadankan cabang dari logaritma kompleks mempunyai ketakkontinuan di sepanjang sumbu-{{mvar|x}} real negatif, seperti yang dapat dilihat pada lompatan hue di gambar. Saat melintasi batas, ketakkontinuan tersebut dimulai dari lompatan hingga batas lain yang ada di cabang yang sama, dalam artian bahwa tiada perubahan dengan nilai-{{mvar|k}} dari cabang tetangga kontinu yang berpadanan. Lokus tersebut dinamakan [[potongan cabang]]. Dengan menghapus perbatasan argumen, maka relasi "argumen dari {{mvar|z}}" dan "logaritma dari {{mvar|z}}" menjadi [[Fungsi bernilai banyak|fungsi bernilai banyak]].
 
=== Kebalikan dari fungsi eksponensial lainnya ===
Baris 545:
Berdasarkan sudut pandang [[teori grup]], identitas {{math|log(''cd'') {{=}} log(''c'') + log(''d'')}} menyatakan [[isomorfisme grup]] antara bilangan [[Bilangan riil|riil]] positif terhadap perkalian bilangan riil positif terhadap penambahan. Fungsi logaritmik hanya isomorfisme kontinu antara grup.<ref>{{Citation|last1=Bourbaki|first1=Nicolas|author1-link=Nicolas Bourbaki|title=General topology. Chapters 5–10|publisher=[[Springer-Verlag]]|location=Berlin, New York|series=Elements of Mathematics|isbn=978-3-540-64563-4|mr=1726872|year=1998}}, bagian V.4.1</ref> Berdasarkan pengertian isomorfisme tersebut, [[ukuran Haar]] ([[ukuran Lebesgue]])&nbsp;{{math|''dx''}} pada riil berpadanan dengan ukuran Haar&nbsp;{{math|{{sfrac|1=''dx''|2=''x''}}}} pada bilangan real positif.<ref>{{Citation|last1=Ambartzumian|first1=R.V.|author-link=Rouben V. Ambartzumian|title=Factorization calculus and geometric probability|publisher=[[Cambridge University Press]]|isbn=978-0-521-34535-4|year=1990|url-access=registration|url=https://archive.org/details/factorizationcal0000amba}}, bagian 1.4</ref> Bilangan riil taknegatif tidak hanya terhadap operasi perkalian, namun juga terhadap operasi penambahan, dan bilangan riil taknegatif membentuk [[semigelanggang]], yang disebut sebagai [[Semigelanggang#Probabilitas semigelanggang|semigelanggang probabilitas]], bahkan membentuk [[semigelanggang]]. Maka logaritma yang mengambil perkalian dengan penambahan (perkalian logaritma), dan mengambil penambahan dengan penambahan logaritma, memberikan [[isomorfisme]] semigelanggang di antara semigelanggang probabilitas dan [[semigelanggang logaritma]].
 
Konsep ini juga terdapat di dalam [[analisis kompleks]] dan [[geometri aljabar]], yang [[Bentuk logaritmik|logaritmik satu bentuk&nbsp;]]{{math|''df''/''f''}} merupakan [[Bentuk diferensial|bentuk diferensial]] dengan [[Pole (analisis kompleks)|pole]] logaritmik.<ref>{{Citation|last1=Esnault|first1=Hélène|last2=Viehweg|first2=Eckart|title=Lectures on vanishing theorems|location=Basel, Boston|publisher=Birkhäuser Verlag|series=DMV Seminar|isbn=978-3-7643-2822-1|mr=1193913|year=1992|volume=20|doi=10.1007/978-3-0348-8600-0|citeseerx=10.1.1.178.3227}}, bagian 2</ref>
 
Selain itu, terdapat [[polilogaritma]], sebuah fungsi yang didefinisikan sebagai