Dalam [[teori bilangan]], [[Teorema Terakhir Fermat]] (kadang kala disebut juga '''Konjektur Fermat''', terutama dalam teks-teks lama) menyatakan bahwa tidak ada tiga bilangan bulat [[bilangan positif|positif]] ''a'', ''b'', dan ''c'' dapat memenuhi persamaan ''a''<sup>''n''</sup> + ''b''<sup>''n''</sup> = ''c''<sup>''n''</sup> untuk sembarang bilangan bulat dengan ''n'' lebih besar dari dua.
Teorema ini pertama kali diungkapkan oleh [[Pierre de Fermat]] pada tahun 1637 di bagian tepi salinan ''[[Arithmetica]]'' dimanadi mana dia mengklaim bahwa ia memiliki bukti yang terlalu panjang untuk dituliskan di bagian pinggir tulisan itu.<ref>{{citation|first=Oystein|last=Ore|title=Number Theory and Its History|year=1988|origyear=1948|publisher=Dover|isbn=978-0-486-65620-5|pages=203–204}}</ref> [[Pembuktian Wiles tentang Teorema terakhir fermat|Pembuktian pertama yang paling berhasil]] diumumkan pada tahun 1994 oleh [[Andrew Wiles]], dan dipublikasikan secara formal pada tahun 1995, setelah 358 tahun para matematikawan berusaha memecahkannya. Masalah yang belum terpecahkan ini mendukung perkembangan [[teori bilangan aljabar]] pada abad ke-19 dan pembuktian [[teorema modularitas]] pada abad ke-20. Teorema ini adalah salah satu teorema paling penting dalam [[sejarah matematika]] dan sebelum berhasil dibuktikan, teorema ini tercatat di ''[[Guinness Book of World Records]]'' untuk "problema matematika paling sulit".