Konten dihapus Konten ditambahkan
Bot5958 (bicara | kontrib)
k Perbaikan untuk PW:CW (Fokus: Minor/komestika; 1, 48, 64) + genfixes
Ariyanto (bicara | kontrib)
k Bersih-bersih (via JWB)
Baris 6:
Pada abad ke-20 dan ke-21, para matematikawan dan ilmuan komputer menemukan pendekatan baru yang apabila digabungkan dengan daya komputasi komputer yang tinggi, mampu memperpanjang representasi desimal {{pi}} sampai dengan lebih 10 triliun (10<sup>13</sup>) digit.<ref name="NW"/> Penerapan bilangan {{pi}} dalam bidang sains pada umumnya tidak memerlukan lebih dari beberapa ratus digit desimal {{pi}} dan bahkan kurang. Motivasi utama penghitungan ini adalah menemukan algoritme yang lebih efisien untuk menghitung rangkaian bilangan panjang sekaligus memecahkan rekor.<ref>{{harvnb|Arndt|Haenel|2006|p=17}}</ref><ref>{{cite journal|first1=David |last1=Bailey |first2=Jonathan |last2=Borwein |first3=Peter |last3=Borwein |first4=Simon |last4=Plouffe |title=The Quest for Pi|url=https://archive.org/details/sim_mathematical-intelligencer_winter-1997_19_1/page/50 |journal=The Mathematical Intelligencer|year=1997|volume=19|issue=1|pages=50–56|doi=10.1007/bf03024340|citeseerx=10.1.1.138.7085}}</ref> Perhitungan ekstensif seperti ini juga digunakan untuk menguji kemampuan [[superkomputer]] dan [[algoritme]] perkalian presisi tinggi. Pada tahun [[1973]], manusia berhasil menemukan 1 juta digit desimal dari π.
 
Karena definisi {{pi}} berhubungan dengan lingkaran, maka pi banyak ditemukan dalam rumus-rumus [[trigonometri]] dan [[geometri]], terutama yang menyangkut lingkaran, elips, dan bola. {{pi}} juga ditemukan pada rumus-rumus bidang ilmu lainnya seperti [[kosmologi]], [[teori bilangan]], [[statistika]], [[fraktal]], [[termodinamika]], [[mekanika]], dan [[elektromagnetisme]]. Keberadaan {{pi}} yang sangat umum menjadikannya sebagai salah satu konstanta matematika yang paling luas dikenal, baik di dalam maupuan di luar kalangan ilmuwan. Hal ini dibuktikan dari beberapa penerbitan buku yang membahas bilangan ini, perayaan [[hari Pi]], dan pemberitaan-pemberitaan yang luas dimanadi mana perhitungan digit {{pi}} berhasil memecahkan rekor perhitungan. Beberapa orang bahkan dengan kerasnya berusaha menghafal nilai bilangan {{pi}} dengan rekor 70.030 digit (Suresh Kumar Sharma, India).
 
== Tinjauan dasar ==
Baris 83:
=== Zaman pendekatan poligon ===
[[Berkas:Archimedes pi.svg|350px|ka|jmpl|alt=diagram of a hexagon and pentagon circumscribed outside a circle|{{pi}} dapat diperkirakan dengan menghitung keliling poligon luar dan dalam lingkaran.]]
Algoritme paling awal yang tercatat secara cermat menghitung nilai {{pi}} adalah pendekatan geometri menggunakan poligon. Algoritme ini ditemukan sekitar 250 SM oleh matematikawan Yunani [[Archimedes]].<ref>{{harvnb|Arndt|Haenel|2006|p=170}}</ref> Algoritme poligon ini mendominasi selama 1.000 tahun, dan karenanya {{pi}} kadang-kadang dirujuk juga sebagai "konstanta Archimedes".<ref>{{harvnb|Arndt|Haenel|2006|pp=175, 205}}</ref> Archimedes menghitung batas atas dan bawah {{pi}} dengan menggambar poligon di luar dan di dalam sebuah lingkaran, dan secara perlahan melipatgandakan sisi-sisi poligon tersebut hingga mencapai 96-gon. Dengan menghitung keliling poligon-poligon tersebut, Archimedes membuktikan bahwa {{frac|223|71}}&nbsp;<&nbsp;{{pi}}&nbsp;<&nbsp;{{frac|22|7}} (3,1408&nbsp;<&nbsp;{{pi}}&nbsp;<&nbsp;3,1429).<ref>{{cite web|url=http://www.mathworks.com/matlabcentral/fileexchange/29504-the-computation-of-pi-by-archimedes/content/html/ComputationOfPiByArchimedes.html#37 |title=The Computation of Pi by Archimedes: The Computation of Pi by ArchimedesArchimedes–File – File Exchange – MATLABExchange–MATLAB Central |publisher=Mathworks.com |date= |accessdate=2013-03-12}}</ref> Batas atas Archimedes sekitar {{frac|22|7}} membuat banyak orang percaya bahwa {{pi}} sama dengan {{frac|22|7}}.<ref>{{harvnb|Arndt|Haenel|2006|p=171}}</ref> Sekitar tahun 150, [[Ptolemaeus]] dalam [[Almagest]]-nya, memberikan nilai {{pi}} sebesar 3,1416. Hasil ini kemungkinan dia dapatkan dari Archimedes ataupun dari [[Apollonius dari Perga]].<ref>{{harvnb|Arndt|Haenel|2006|p=176}}</ref><ref>{{harvnb|Boyer|Merzbach|1991|p=168}}<!--may be suspect--></ref> Para matematikawan kemudian menggunakan algoritme ini dan mencapai rekor 39 digit {{pi}} pada tahun 1630 sebelum dipecahkan pada tahun 1699 menggunakan deret tak terhingga.<ref name="ArPI">{{harvnb|Arndt|Haenel|2006|pp=15–16, 175, 184–186, 205}}.</ref><ref group="n">Grienberger mencapai 39 digit pada tahun 1630; Sharp 71 digit pada tahun 1699.</ref>
[[Berkas:Domenico-Fetti Archimedes 1620.jpg|jmpl|lurus|alt=A painting of a man studying|[[Archimedes]] mengembangkan algoritme poligon untuk menghitung nilai pendekatan {{pi}}.]]
Pada zaman Cina kuno, nilai {{pi}} adalah 3,1547 (sekitar tahun 1 Masehi), <math>\scriptstyle \sqrt{10}</math> (tahun 100, sekitar 3,1623), dan 142/45 (abad ke-3, sekitar 3,1556).<ref>{{harvnb|Arndt|Haenel|2006|pp=176–177}}</ref> Sekitar tahun 265, matematikawan dari [[Kerajaan Wei]], [[Liu Hui]], menemukan [[algoritme π Liu Hui|algoritme iteratif berbasis poligon]] yang digunakan dengan 3072-gon untuk menghasilkan nilai {{pi}} sebesar 3,1416.<ref name="autogenerated202">{{harvnb|Boyer|Merzbach|1991|p=202}}</ref><ref>{{harvnb|Arndt|Haenel|2006|p=177}}</ref> Liu kemudian menciptakan metode yang lebih cepat dan mendapatkan nilai 3,14 dengan menggunakan 96-gon.<ref name="autogenerated202" /> Matematikawan Cina [[Zu Chongzhi]] sekitar tahun 480 menghitung bahwa {{pi}}&nbsp;≈&nbsp;{{frac|355|113}} (pecahan ini dinamakan pecahan [[Milü]] dalam bahasa Cina) dengan menggunakan algoritme Liu Hui dan menerapkannya menggunakan 12.288-gon. Nilai yang didapatkannya adalah 3,141592920... dan akurat sebanyak tujuh digit. Nilai pendekatan ini merupakan nilai yang paling akurat selama 800 tahun ke depan.<ref>{{harvnb|Arndt|Haenel|2006|p=178}}</ref>
Baris 280:
Bidang [[probabilitas]] dan [[statistik]] sering kali menggunakan [[distribusi normal]] sebagai model sederhana untuk fenomena kompleks; sebagai contoh, ilmuwan umumnya berasumsi bahwa kesalahan pengamatan dalam kebanyakan percobaan mengikuti sebuah distribusi normal.<ref>Feller, W. ''An Introduction to Probability Theory and Its Applications, Vol. 1'', Wiley, 1968, hlm. 174–190.</ref> [[Fungsi Gauss]] (yang merupakan [[fungsi kepekatan probabilitas]] distribusi normal) dengan rata-rata {{math|μ}} dan [[simpangan baku]] {{math|σ}}, pada dasarnya adalah {{pi}}:<ref name="GaussProb">{{harvnb|Bronshteĭn|Semendiaev|1971|pp=106–107, 744, 748}}</ref>
 
:: <math>f(x) = {1 \over \sigma\sqrt{2\pi} }\,e^{-(x-\mu )^2/(2\sigma^2)}</math>
 
Agar ini dapat menjadi kepekatan probabilitas, wilayah di bawah grafik f harus sama dengan satu. Hal ini diperoleh dari perubahan variabel dalam [[integral Gauss]]:<ref name="GaussProb" />