Bilangan segitiga kuadrat: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib)
kubik sebaiknya diganti dengan pangkat. Selain itu, ce
Dedhert.Jr (bicara | kontrib)
display block untuk rumus yang berdiri sendiri
Baris 1:
[[Berkas:Nicomachus_theorem_3D.svg|ka|jmpl| Persegi yang panjang sisinya adalah bilangan segitiga dapat dipartisi menjadi persegi dan setengah persegi, yang luasnya bertambah menjadi jumlah bilangan pangkat tiga.<ref>{{Harvard citation text|Gulley|2010}}</ref> ]]
Dalam [[Teori bilangan|teorema bilangan]], jumlah <math>n </math> [[pangkat tiga]] pertama adalah kuadrat dari bilangan [[Bilangan segitiga|segitiga]] ke-<math>n </math>. Jumlah tersebut dirumuskan sebagai<math display="block">1^3+2^3+3^3+\cdots+n^3 = \left(1+2+3+\cdots+n\right)^2.</math>Dengan menggunakan [[notasi Sigma]], persamaan tersebut dapat ditulis<math display="block">\sum_{k=1}^n k^3 = \bigg(\sum_{k=1}^n k\bigg)^2.</math>
 
: <math>1^3+2^3+3^3+\cdots+n^3 = \left(1+2+3+\cdots+n\right)^2.</math>
 
Dengan menggunakan [[notasi Sigma]], persamaan tersebut dapat ditulis:
 
: <math>\sum_{k=1}^n k^3 = \bigg(\sum_{k=1}^n k\bigg)^2.</math>
 
[[ Identitas (matematika) |Identitas]] tersebut terkadang disebut juga '''teorema Nicomachus''', yang dinamai dari [[Nicomachus|Nicomachus dari Geresa]].
Baris 28 ⟶ 22:
 
== Pembuktian ==
{{harvs|txt|first=Charles|last=Wheatstone|authorlink=Charles Wheatstone|year=1854}} memberikan pembuktian yang sangat sederhana, dengan memperluas setiap bilangan kubik dalam penjumlahan menjadi suatu himpunan dari bilangan ganjil yang berurutan. Wheatstone memulainya dengan memberikan identitas<math display="block">n^3 = \underbrace{\left(n^2-n+1\right) + \left(n^2-n+1+2\right) + \left(n^2-n+1+4\right)+ \cdots + \left(n^2+n-1\right)}_{n\text{ bilangan ganjil berurutan }}.</math>Identitas tersebut berkaitan dengan [[bilangan segitiga]] <math>T_n</math> yang disederhankan sebagai:<math display="block">n^3 =\sum _{k=T_{n-1}+1}^{T_{n}} (2 k-1).</math>Dengan demikian, tinambah di atas akan membentuk <math>n^3 </math> setelah semua bilangan segitiga membentuk nilai sebelumnya yang dimulai dari <math>1^3 </math> sampai <math>(n-1)^3</math> . Dengan menerapkan sifat tersebut, bersama dengan identitas terkenal lainnya:<math display="block">n^2 = \sum_{k=1}^n (2k-1),</math>maka akan menghasilkan bentuk berikut:<math display="block">
 
: <math>n^2 = \sum_{k=1}^n (2k-1),</math>
 
maka akan menghasilkan bentuk berikut:
 
: <math>
\begin{align}
\sum_{k=1}^n k^3 &= 1 + 8 + 27 + 64 + \cdots + n^3 \\
Baris 41 ⟶ 29:
&= (1 + 2 + \cdots + n)^2 \\
&= \bigg(\sum_{k=1}^n k\bigg)^2.
\end{align}</math>
 
{{harvtxt|Row|1893}} mendapatkan bukti lain dengan menjumlahkan bilangan-bilangan dalam suatu [[tabel perkalian]] persegi dengan dua cara berbeda. Jumlah dari baris ke-<math>i</math> adalah <math>i</math> dikalikan dengan bilangan segitiga, yang berarit bahwa jumlah dari semua baris adalah kuadrat dari bilangan segitiga. Cara lainnya adalah seseorang dapat menguraikan tabel menjadi barisan [[gnomon]] bersarang, yang masing-masing bilangan terdiri dari hasil kali yang lebih besar dari dua suku memberikan suatu nilai konstan. Jumlah dalam setiap gnomon adalah bilangan pangkat tiga, dan demikian bahwa jumlah seluruh tabel adalah jumlah bilangan pangkat tiga.