Deret geometrik: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k Menambah Kategori:Artikel yang mengandung pembuktian menggunakan HotCat |
k pembersihan kosmetika dasar |
||
Baris 77:
=== Rumus ===
[[Berkas:Geometric_squares3.png|jmpl|Turunan geometrik berikut dari <math display="inline">S = \frac{a}{1 - r}</math> mulai dengan mewakili suku-suku dari deret geometrik <math display="inline">1, r, r^2, \dots, r^i, \dots</math> sebagai luas persegi bertindih,
<math display="inline">A_0,A_1,A_2,\dots,A_i,\dots</math> masing-masing. Setiap luas persegi bertindih <math display="inline">A_i</math> memiliki luas berbentuk L tak bertindih <math display="inline">L_i = A_i - A_{i + 1} = A_i \cdot (1 - r)</math>. Oleh karena itu, <math display="inline">\frac{A_i}{L_i} = \frac{1}{1 - r}</math> atau <math display="inline">A_i = \frac{L_i}{1 - r}</math>. Dengan kata lain, setiap luas persegi bertindih bsa ditransformasi menjadi sebuah luas ekuivalen berbentuk L tak bertindih dengan penskalaan bahwa sebuah faktor dari <math display="inline">\frac{1}{1 - r}</math>. Diberikan bahwa penjumlahan dari semua luas berbentuk L tidak berskala adalah <math display="inline">1 </math> (karena mereka mempartisi persegi satuan), penjumlahan dari semua luas berbentuk L berskala oleh <math display="inline">\frac{1}{1 - r}</math> juga harus <math display="inline">\frac{1}{1 - r}</math>, di mana penjumlahan dari semua suku dari deret geometrik. Sebuah skala umum untuk mendapatkan benetuk yang lebih umum dari rumus bentuk tertutup, <math display="inline">S = \frac{a}{1 - r}</math>, di mana diturunkan untuk rentang <math display="inline">0 < r < 1</math> tetapi bisa diperpanjang hingga rentang <math display="inline">-1 < r < 1</math> dengan menerapkan rumus yang diturunkan secara terpisah menjadi dua partisi dari deret geometrikː salah satu dengan pangkat genap <math display="inline">r</math> (yang tidak bisa negatif) dan lainnya dengan pangkat ganjil <math display="inline">r</math> (yang bisa negatif). Jumlah dari dua partisi adalah <math display="inline">S = \frac{a}{1 - r^2} + \frac{ar}{1 - r^2} = \frac{a \cdot (1 + r)}{(1 - r)(1 + r)} = \frac{a}{1 - r}</math>.]]
Baris 88:
dimana <math>a</math> adalah suku pertama dari deret, dan <math>r</math> adalah rasio. Salah satunya bisa menurunkan rumus untuk penjumlahan, <math>s</math>, sebagai berikutː
Karena <math>n</math> mendekati tak terhingga, nliai absolut <math>r</math> harus lebih kecil dari satu untuk deret ke konvergen. Penjumlahannya kemudian menjadi
Ketika <math>a = 1</math>, ini bisa disederhanakan menjadi
Baris 102 ⟶ 100:
=== Bukti kekonvergenan ===
Kita bisa membuktikan bahwa deret geometrik konvergen menggunakan rumus penjumlahan untuk sebuuah [[
: <math>\begin{align}
Baris 124 ⟶ 122:
Perhatikan bahwa
Dengan demikian,
Baris 220 ⟶ 217:
Kekonvergenan dari sebuah deret geometrik mengungkapkan bahwa sebuah penjumlahan dari sebuah bilangan takhingga yang dijumlahkan memang bisa terbatas, dan juga memungkinkan salah satu untuk menyelesaikan banyaknya paradonks [[Zeno dari Elea|Zeno]].. Sebagai contoh, paradoks dikotomi Zeno menyatakan bahwa gerakan itu tidak mungkin, sebagai salah satu bisa dibagi setiap lintasan yang hingga menjadi sebuah bilangan takhingga dari langkah-langkah dimana setiap langkah diambil menjadi setengah jarak yang tersisa. Kesalaan Zeno ada dalam asumsi bahwa jumlah dari sebuah bilangan takhingga dari langkah-langkah terhingga tidak bisa terhingga. Ini tentu saja tidak benar, sebagaimana dibuktikan oleh kekonvergenan dari deret geometrik dengan <math display="inline">r = \frac{1}{2} </math>.
Ini, bagaimanpun, bukanlah resolusi lengkap untuk paradoks dikotomi Zeno. Tegasnya, kecuali kita memungkinkan untuk waktu bergerak mundur, dimana ukuran langkah mulia dengan <math display="inline">r = \frac{1}{2} </math> dan mendekati nol sebagai limit, deret takhingga ini jika tidak harus dimulai dengan sebuah langkah sangat kecil. Memperlakukan infinitesimal dalam cara ini biasanya bukan sesuatu yang didefinisikan secara matematis dengan ketat, diluar [[Kalkulus nonstandar|Kalkulus Nonstandar]]. Jadi, meskipun benar bahwa di seluruh penjumlahan takhingga menghasilkan sebuah bilangan terhingga, kita tidak dapat menciptakan sebuah pengurutan sederhana dari suku-suku ketika dimulai dari sebuah infintesimal, dan karena itu kita tidak cukup emenggambarkan langkah pertma dari setiap aksi yang diberikan.
=== Euklid ===
Baris 276 ⟶ 273:
* [[0.999...]] – Perpanjang desimal alternatif dari bilangan 1
* [[Asimtot]] – Dalam geometri, limit dari tangen pada sebuah titik yang cenderung ke takhingga
* [[Barisan geometri
* [[Deret (matematika)]] – Penjumlahan takhingga
* [[Deret geometrik divergen]]
Baris 334 ⟶ 331:
* {{Cite web|last=Casselman|first=Bill|title=A Geometric Interpretation of the Geometric Series|url=http://merganser.math.gvsu.edu/calculus/summation/geometric.html|format=Applet|archive-url=https://web.archive.org/web/20070929083805/http://merganser.math.gvsu.edu/calculus/summation/geometric.html|archive-date=2007-09-29|url-status=dead}}
* [http://demonstrations.wolfram.com/GeometricSeries/ "Geometric Series"] by Michael Schreiber, Wolfram Demonstrations Project, 2007.
[[Kategori:Deret geometrik]]
[[Kategori:Rasionalis]]
|