Bilangan asli: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) gambar lebih baik Tag: Suntingan visualeditor-wikitext |
Dedhert.Jr (bicara | kontrib) pindahkan kembali format-formatnya Tag: Suntingan visualeditor-wikitext |
||
Baris 17:
Kemajuan besar lainnya adalah pengembangan gagasan angka nol sebagai bilangan dengan lambangnya tersendiri. Nol telah digunakan dalam [[notasi]] posisi sedini 700 SM oleh orang-orang Babylon, namun mereka melepaskan bila menjadi lambang terakhir pada bilangan tersebut.<ref>[http://www-history.mcs.st-and.ac.uk/history/HistTopics/Zero.html "... a tablet found at Kish ... thought to date from around 700 BC, uses three hooks to denote an empty place in the positional notation. Other tablets dated from around the same time use a single hook for an empty place."]</ref> Konsep nol pada masa modern berasal dari matematikawan [[India]], [[Brahmagupta]].
Pada abad ke-[[19]] dikembangkan definisi bilangan asli menggunakan [[teori himpunan]]. Dengan definisi ini, dirasakan lebih mudah memasukkan nol (berkorespondensi dengan [[himpunan kosong]]) sebagai bilangan asli, dan sekarang menjadi konvensi dalam bidang teori himpunan, [[logika]] dan [[ilmu komputer]].<ref>{{cite web |author=Michael L. Gorodetsky |url=http://hbar.phys.msu.ru/gorm/chrono/paschata.htm |title=Cyclus Decemnovennalis Dionysii - Nineteen year cycle of Dionysius |publisher=Hbar.phys.msu.ru |date=2003-08-25 |accessdate=2012-02-13 |archive-date=2019-01-15 |archive-url=https://web.archive.org/web/20190115083618/http://hbar.phys.msu.ru/gorm/chrono/paschata.htm |dead-url=yes }}</ref> Matematikawan lain, seperti dalam bidang [[teori bilangan]], bertahan pada tradisi lama dan tetap menjadikan 1 sebagai bilangan asli pertama.<ref>Ini umum di dalam buku ajar mengenai [[analisis real]]. Sebagai contoh, lihat {{harvp|Carothers|2000}}, hlm. 3; atau {{harvp|Thomson|Bruckner|Bruckner|
== Penulisan ==
Himpunan bilangan asli umumnya dilambangkan <math> \mathbf{N} </math> atau <math>\mathbb{N}</math>. Ada sumber yang terkadang melambangkan himpunan bilangan asli sebagai <math> J </math>.<ref>{{
|url = https://archive.org/details/1979RudinW▼
|title = Principles of Mathematical Analysis▼
|last = Rudin |first=W.▼
|publisher=McGraw-Hill▼
|year=1976▼
|isbn=978-0-07-054235-8▼
|location = New York▼
|page=25}}</ref>▼
Karena bilangan asli dapat mengandung {{math|0}} atau tidak, adakala pentingnya untuk mengetahui versi manakah yang dimaksud. Ini sering kali dinyatakan berdasarkan konteks, tetapi juga dapat dinyatakan melalui penggunaan subskrip atau superskrip di notasinya, seperti:<ref>{{
* Bilangan asli tanpa adanya nol: <math>\{1,2,...\}=\mathbb{N}^*= \mathbb N^+=\mathbb{N}_0\smallsetminus\{0\} = \mathbb{N}_1</math>
* Bilangan asli dengan nol: <math>\;\{0,1,2,...\}=\mathbb{N}_0=\mathbb N^0=\mathbb{N}^*\cup\{0\}</math>
Baris 50 ⟶ 59:
=== Sifat aljabar yang dipenuhi bilangan asli===
Operasi penambahan (+) dan perkalian (×) pada bilangan asl, seperti yang didefinisikan sebelumnya, memiliki beberapa sifat-sifat aljabar:
* [[Ketertutupan (matematika)|Ketertutupan]] di bawah penambahan dan perkalian: untuk semua bilangan asli {{math|''a''}} dan {{math|''b''}}, maka {{math|''a'' + ''b''}} dan {{math|''a'' × ''b''}} adalah bilangan asli.<ref>{{
| last1 = Fletcher | first1 = Harold▼
* [[Sifat asosiatif|Pengelompokan]]: untuk semua bilangan asli {{math|''a''}}, {{math|''b''}}, dan {{math|''c''}}, maka {{math|''a'' + (''b'' + ''c'') {{=}} (''a'' + ''b'') + ''c''}} dan {{math|''a'' × (''b'' × ''c'') {{=}} (''a'' × ''b'') × ''c''}}.<ref>{{harvp|Davisson|1910}}, hlm. 2. "Addition of natural numbers is associative" [Penambahan dari bilangan asli adalah asosiatif (pengelompokan)]</ref>▼
| last2 = Howell | first2 = Arnold A.▼
* [[Sifat komutatif|Pertukaran]]: untuk semu bilangan asli {{math|''a''}} dan {{math|''b''}}, maka {{math|''a'' + ''b'' {{=}} ''b'' + ''a''}} dan {{math|''a'' × ''b'' {{=}} ''b'' × ''a''}}.<ref>{{harvp|Brandon|Brown|Gundlach|Cooke|1962}}, hlm. 25.</ref>▼
| date = 2014-05-09▼
| title = Mathematics with Understanding▼
| publisher = Elsevier▼
| isbn = 978-1-4832-8079-0▼
| quote = ...the set of natural numbers is closed under addition... set of natural numbers is closed under multiplication" [...himpunan bilangan asli tertutup di bawah penambahan... himpunan bilangan asli tertutup di bawah perkalian}}</ref>
▲* [[Sifat asosiatif|Pengelompokan]]: untuk semua bilangan asli {{math|''a''}}, {{math|''b''}}, dan {{math|''c''}}, maka {{math|''a'' + (''b'' + ''c'') {{=}} (''a'' + ''b'') + ''c''}} dan {{math|''a'' × (''b'' × ''c'') {{=}} (''a'' × ''b'') × ''c''}}.<ref>{{
| last = Davisson | first = Schuyler Colfax▼
| title = College Algebra▼
| date = 1910▼
| publisher = Macmillian Company▼
| url = https://books.google.com/books?id=E7oZAAAAYAAJ&pg=PA2▼
| quote = Addition of natural numbers is associative. [Penambahan dari bilangan asli adalah asosiatif (pengelompokan).]}}</ref>▼
▲* [[Sifat komutatif|Pertukaran]]: untuk semu bilangan asli {{math|''a''}} dan {{math|''b''}}, maka {{math|''a'' + ''b'' {{=}} ''b'' + ''a''}} dan {{math|''a'' × ''b'' {{=}} ''b'' × ''a''}}.<ref>{{
| last1 = Brandon | first1 = Bertha (M.)▼
| last2 = Brown | first2 = Kenneth E.▼
| last3 = Gundlach | first3 = Bernard H.▼
| last4 = Cooke | first4 = Ralph J.▼
| page = 25
| title = Laidlaw mathematics series▼
| publisher = Laidlaw Bros.▼
| volume = 8
| lang = en
| url = https://books.google.com/books?id=xERMAQAAIAAJ&newbks=0&printsec=frontcover&dq=Natural+numbers+commutative&q=Natural+numbers+commutative&hl=en}}</ref>▼
* Keberadaan [[elemen identitas]]: untuk setiap bilangan asli {{math|''a''}}, {{math|''a'' + 0 {{=}} ''a''}} dan {{math|''a'' × 1 {{=}} ''a''}}.
* [[Sifat distributif|Distribusi]] dari perkalian atas penambahan untuk semua bilangan asli {{math|''a''}}, {{math|''b''}}, dan {{math|''c''}}, {{math|''a'' × (''b'' + ''c'') {{=}} (''a'' × ''b'') + (''a'' × ''c'')}}.
Baris 72 ⟶ 110:
== Referensi ==
{{refbegin|2}}
▲ | last1 = Brandon | first1 = Bertha (M.)
▲ | last2 = Brown | first2 = Kenneth E.
▲ | last3 = Gundlach | first3 = Bernard H.
▲ | last4 = Cooke | first4 = Ralph J.
▲ | date = 1962
▲ | title = Laidlaw mathematics series
▲ | publisher = Laidlaw Bros.
▲ | volume = 8
▲ | lang = en
▲ | url = https://books.google.com/books?id=xERMAQAAIAAJ&newbks=0&printsec=frontcover&dq=Natural+numbers+commutative&q=Natural+numbers+commutative&hl=en}}
* {{cite book
|last=Carothers |first=N.L.
Baris 92 ⟶ 118:
|via=Google Books
|url=https://books.google.com/books?id=4VFDVy1NFiAC&q=natural+numbers#v=onepage&q=%22natural%20numbers%22&f=false
|ref = {{harvid|Carothers|2000}}
}}
▲ | last = Davisson | first = Schuyler Colfax
▲ | title = College Algebra
▲ | date = 1910
▲ | publisher = Macmillian Company
▲ | lang = en
▲ | url = https://books.google.com/books?id=E7oZAAAAYAAJ&pg=PA2
▲ | quote = Addition of natural numbers is associative.}}
▲ | last1 = Fletcher | first1 = Harold
▲ | last2 = Howell | first2 = Arnold A.
▲ | date = 2014-05-09
▲ | title = Mathematics with Understanding
▲ | publisher = Elsevier
▲ | isbn = 978-1-4832-8079-0
▲ | lang = en
▲ | url = https://books.google.com/books?id=7cPSBQAAQBAJ&pg=PA116}}
▲* {{cite book |last1=Grimaldi |first1=Ralph P. |title=Discrete and Combinatorial Mathematics: An applied introduction |publisher=Pearson Addison Wesley |isbn=978-0-201-72634-3 |edition=5 |year=2004}}
▲ |url = https://archive.org/details/1979RudinW
▲ |title = Principles of Mathematical Analysis
▲ |last = Rudin |first=W.
▲ |publisher=McGraw-Hill
▲ |year=1976
▲ |isbn=978-0-07-054235-8
▲ |location = New York
▲ |page=25}}
* {{cite book
Baris 137 ⟶ 131:
|via=Google Books
|url=https://books.google.com/books?id=vA9d57GxCKgC
|ref = {{harvid|Thomson|Bruckner|Bruckner|2008}}
}}
{{refend}}
|