Penambahan: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Wagino Bot (bicara | kontrib) |
R.A Aziz H (bicara | kontrib) Fitur saranan suntingan: 3 pranala ditambahkan. |
||
Baris 236:
=== Bilangan asli ===
{{further|Bilangan asli}}
Ada dua cara populer untuk mendefinisikan jumlah dari dua bilangan asli ''a'' dan ''b''. Jika bilangan asli didefinisikan sebagai [[Bilangan kardinal|kardinalitas]] dari [[himpunan hingga]], (kardinalitas suatu himpunan adalah banyak unsur dalam himpunan tersebut), maka jumlah dua bilangan asli bisa didefinisikan sebagai berikut:
* Misalkan N(''S'') adalah lambang untuk kardinalitas himpunan ''S''. Misalkan terdapat dua himpunan saling lepas ''A'' dan ''B'', dengan {{nowrap|1=N(''A'') = ''a''}} dan {{nowrap|1=N(''B'') = ''b''}}. Maka {{nowrap|''a'' + ''b''}} didefinisikan sebagai <math> N(A \cup B)</math>.<ref>Begle p. 49, Johnson p. 120, Devine et al. p. 75</ref>
Di sini, {{nowrap|1=''A'' ∪ ''B''}} adalah [[gabungan (teori himpunan)|gabungan]] dari ''A'' dan ''B''. Versi alternatif dari definisi ini memungkinkan ''A'' dan ''B'' bertindih dan kemudian mengambil [[satuan disjoin]], mekanisme yang memungkinkan unsur-unsur umum untuk dipisahkan dan karena itu dihitung dua kali.
Baris 303:
==== Vektor ====
{{Main|Penjumlahan vektor}}
Dalam [[aljabar linear]], [[ruang vektor]] adalah struktur aljabar yang mengandung operasi penambahan antara dua [[vektor (spasial)|vektor]] dan [[perkalian skalar]] suatu vektor. Contoh ruang vektor adalah himpunan semua pasangan terurut bilangan real; suatu pasangan terurut bilangan real (''a'',''b'') dianggap sebagai sebuah vektor dari titik nol ke titik (''a'',''b''). Jumlah dua vektor diperoleh dari menambahkan masing-masing koordinatnya:
:<math>(a,b) + (c,d) = (a+c,b+d).</math>
Operasi penambahan ini penting sekali bagi [[mekanika klasik]], di mana [[gaya (fisika)|gaya]] ditafsirkan sebagai vektor.
Baris 363:
==== Aritmetika modular ====
{{Main|Aritmetika modular}}
Dalam [[aritmetika modular]], penambahan dua bilangan bulat hasilnya sama dengan bilangan bulat yang [[Relasi kongruensi|kongruen]] dengan jumlah kedua bilangan bulat tersebut.
==== Teori umum ====
|