Pemelajaran mesin: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
kTidak ada ringkasan suntingan |
Penggantian kata pembelajaran menjadi pemelajaran sesuai dengan padanan kata yang lebih benar |
||
Baris 1:
{{Pemelajaran mesin}}
'''Pemelajaran mesin''', cabang dari [[kecerdasan buatan]] adalah suatu bidang kajian yang berfokus pada pengembangan dan studi mengenai [[Statistika komputasi|algoritma statistik]] yang dapat secara efektif melakukan [[generalisasi]] dan sebagai hasilnya, dapat mengerjakan tugas-tugas yang diberikan tanpa instruksi secara eksplisit.{{refn|Definisi "tanpa harus diprogram secara eksplisit" sering dikaitkan dengan [[Arthur Samuel]], pencipta istilah "machine learning" pada tahun 1959. Namun, frasa ini tidak ditemukan secara harfiah dalam publikasi tersebut dan mungkin merupakan parafrase yang muncul kemudian. Rujuk "Parafrase Arthur Samuel (1959), the question is: How can computers learn to solve problems without being explicitly programmed?" dalam {{Cite conference |chapter=Automated Design of Both the Topology and Sizing of Analog Electrical Circuits Using Genetic Programming |conference=Artificial Intelligence in Design '96 |last1=Koza |first1=John R. |last2=Bennett |first2=Forrest H. |last3=Andre |first3=David |last4=Keane |first4=Martin A. |title=Artificial Intelligence in Design '96 |date=1996 |publisher=Springer, Dordrecht |pages=151–170 |language=en |doi=10.1007/978-94-009-0279-4_9 |isbn=978-94-010-6610-5 }}}} Baru-baru ini, [[jaringan syaraf tiruan]] generatif telah mampu melampaui banyak pendekatan sebelumnya dari segi kinerja.<ref name="ibm">{{Cite web |title=What is Machine Learning? |url=https://www.ibm.com/topics/machine-learning |access-date=2023-06-27 |website=IBM |language=en-us}}</ref><ref name=":6">{{Cite web |last=Zhou |first=Victor |date=2019-12-20 |title=Machine Learning for Beginners: An Introduction to Neural Networks |url=https://towardsdatascience.com/machine-learning-for-beginners-an-introduction-to-neural-networks-d49f22d238f9 |url-status=live |access-date=2021-08-15 |website=Medium |language=en |archive-date=2022-03-09 |archive-url=https://web.archive.org/web/20220309053518/https://towardsdatascience.com/machine-learning-for-beginners-an-introduction-to-neural-networks-d49f22d238f9 }}</ref> Pendekatan
Landasan matematis dari
Pemelajaran mesin dikenal dalam aplikasinya dalam menyelesaikan masalah bisnis dengan nama [[analisis prediktif]]. Meskipun tidak semua algoritma
== Definisi ==
Mesin yang dimaksud di sini adalah mesin dalam pengertian lebih mendekati kepada ‘sistem’, bukan mesin 'mekanik'. Istilah
== Sejarah ==
Pada tahun 1951, [[John McCarthy]] yang baru saja mendapatkan gelar PhD meyakinkan Minsky, [[Claude Shannon]], dan [[Nathaniel Rochester]] untuk membantunya membawa peneliti [[Amerika Serikat]] yang memiliki ketertarikan pada teori automata, jaring saraf, dan studi mengenai kecerdasan menjadi satu. Mereka mengorganisir sebuah lokakarya di [[Dartmouth College]] di Hanover, New [[Hampshire]] pada tahun 1956. Pada saat itulah dianggap menjadi tahun lahirnya kecerdasan buatan. Sejak awal, para peneliti kecerdasan buatan tidak segan membuat prediksi mengenai keberhasilan dari kecerdasan buatan ini. Pada awalnya kecerdasan buatan berkembang cukup pesat, hal ini disebabkan karena ekspektasi yang terlalu tinggi dari para peneliti di bidang ini. Hingga pada tahun 1974, bidang kecerdasan buatan mulai kurang diminati. Sampai pada tahun 1980, ketertarikan terhadap kecerdasan buatan sebagai bidang penelitian mulai bangkit kembali. Salah satu yang mendukung hal ini adalah hasil kerja Yarowsky (1995), ia melakukan percobaan menggunakan
== Perbedaan dengan penggalian data ==
[[Penggalian data]] (''data mining'') adalah sebuah proses untuk menemukan pengetahuan, ketertarikan, dan pola baru dalam bentuk model yang deskriptif, dapat dimengerti, dan prediktif dari data dalam skala besar.<ref>M. J. Zaki, W. Meira Jr., ''Data Mining and Analysis: Fundamental Concepts and Algorithms'', Cambridge University Press, 2014.</ref> Dengan kata lain ''data mining'' merupakan ekstraksi atau penggalian pengetahuan yang diinginkan dari data dalam jumlah yang sangat besar.<ref>J. Han, M. Kamber, ''Data Mining: Concepts and Techniques'', Morgan Kaufmann, 2006.</ref>
Dari definisi diatas dapat disimpulkan bahwa pada
== Tipe algoritma ==
[[Algoritme|algoritma]] dalam
* [[Pemelajaran terarah|
:
:Salah satu contoh yang paling sederhana adalah terdapat sekumpulan contoh masukan berupa umur seseorang dan contoh keluaran yang berupa tinggi badan orang tersebut. algoritma
:Contoh implementasi dengan metode ini adalah pada kasus deteksi spam pada surel. Data latih yang digunakan akan diberi label berupa spam dan bukan spam. Mesin akan mempelajari data-data tersebut melalui proses ''learning'' sehingga dapat menghasilkan keluaran berupa mesin yang sudah terlatih untuk mengelompokkan surel yang spam dan bukan spam.
* [[Pemelajaran tak terarah|
:Algoritma ini mempunyai tujuan untuk mempelajari dan mencari pola-pola menarik pada masukan yang diberikan.<ref>K. P. Murphy, ''Machine Learning: A Probabilistic Perspective'', The MIT Press, Cambridge, Massachusetts, London, England.</ref> Meskipun tidak disediakan keluaran yang tepat secara eksplisit. Salah satu algoritma ''unsupervised learning'' yang paling umum digunakan adalah ''clustering'' atau pengelompokan.<ref name=":0" />
:Berbeda dengan metode sebelumnya, metode ini tidak menggunakan data latih dalam melakukan
:Contoh ''unsupervised learning'' dalam dunia nyata, misalnya seorang supir taksi yang secara perlahan-lahan menciptakan konsep "macet" dan "tidak macet" tanpa pernah diberikan contoh oleh siapapun.<ref name=":0" />
*
:Algoritma
:Misalnya sebuah sistem yang dapat menebak umur seseorang berdasarkan foto orang tersebut. Sistem tersebut membutuhkan beberapa contoh, misalnya yang didapatkan dengan mengambil foto seseorang dan menanyakan umurnya (
* Reinforcement learning: Tipe ini mengajarkan bagaimana cara bertindak untuk menghadapi suatu masalah, yang suatu tindakan itu mempunyai dampak. Adalah sebuah algoritma
*
* Transduction: Tipe ini hampir mirip dengan Supervised Learning, tapi tidak secara jelas untuk membangun suatu fungsi melainkan mencoba memprediksi output baru yang berdasarkan dari input baru, masukan pelatihan input dan output
* Learning to learn: Tipe ini menggunakan algoritma untuk mempelajari yang sebelumnya.
Baris 41:
=== Pohon keputusan ===
Sebagai contoh pohon keputusan dapat digunakan untuk penyaringan ''email''. Dengan memasukan fitur-fitur dari ''email'' yang telah ditentukan menjadi cabangnya, dan nantinya cabang-cabang tersebut memiliki daun yang dapat menentukan ''email'' tersebut masuk ke label yang mana yang telah tersedia.
Baris 49:
=== Pengelompokan ===
Pengelompokan (''clustering'') merupakan salah satu
Sebagai contoh, para astronom harus melakukan pengelompokan untuk menentukan tipe dari bintang-bintang berdasarkan data spektrum dari ratusan ribu bintang sehingga pada akhirnya mendapatkan istilah seperti “''red giant''” dan “''white dwarf''”.<ref name=":0" />
Baris 57:
=== Pemrograman logika induktif ===
Pemrograman logika induksi (''inductive logic programming'') merupakan salah satu pendekatan
Contohnya pada
== Manfaat dan implementasi ==
Pemelajaran mesin menjaganya agar tetap sederhana, sebuah algoritma dikembangkan untuk mencatat perubahan dalam data dan berevolusi dalam desain itu untuk mengakomodasi temuan baru. Seperti diterapkan untuk analisis prediktif, fitur ini memiliki dampak luas mulai pada kegiatan yang biasanya dilakukan untuk mengembangkan, menguji, dan memperbaiki algoritma untuk tujuan tertentu.
Aplikasi untuk
* Machine perception
* Computer vision, including object recognition
Baris 91:
== Penerapan pada masa depan ==
Meskipun Machine Learning tidak dapat secara efektif memprediksi jengkel pengguna, kita masih percaya bahwa masih banyak yang bisa dilakukan untuk mencapai hasil yang lebih baik pada proyek ini. Pertama-tama, kumpulan data kami adalah kecil untuk metode
Hal lain yang kita ingin mencoba adalah mengubah permainan yang memainkan pengguna . Karena kita menggunakan jenis permainan penembak, banyak " menumbuk tombol " adalah terlibat. Sesuatu yang lebih seperti permainan balap dapat bekerja lebih baik untuk mendeteksi gangguan dengan sensor gaya, karena ada lebih banyak tombol memegang terlibat daripada dengan game jenis shooter. Sebuah permainan balap juga dapat memperkenalkan lebih terkait game stres dari sebuah permainan yang melibatkan menembak.
== Lihat pula ==
* [[Pengenalan pola]]
* [[Pemelajaran dalam|
== Referensi ==
|