Deret geometrik: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Fitur saranan suntingan: 2 pranala ditambahkan. |
k →Deret geometrik spesifik: membetulkan ejaan |
||
Baris 289:
* [[1/2 – 1/4 + 1/8 – 1/16 + ⋯]]
* [[1/4 + 1/16 + 1/64 + 1/256 + ⋯]]
* Sebuah deret geometrik adalah sebuah deret satuan (deret penjumlahan konvergen
* Suku dari sebuah deret geometrik juga suku dari sebuah [[Bilangan Fibonacci|urutan Fibonacci]] yang digeneralisasi (<math>F_n = F_{n - 1} + F_{n - 2}</math> tetapi tanpa membutuhkan <math>F_0 = 0</math> dan <math>F_1 = 1</math>) ketika sebuah rasio deret geometrik <math>r </math><math>r </math> sama dengan [[rasio emas]] (yaitu rasio <math display="inline">r = \frac{1 \pm \sqrt{5}}{2}</math>).
* Satu-satu deret geometrik yang adalah sebuah deret satuan dan juga memiliki suku-suku dari sebuah [[Bilangan Fibonacci|barisan Fibonacci]] yang digeneralisasi memiliki [[rasio emas]] sebagai skalanya <math>a </math> dan konjugasinya [[rasio emas]] sebagai rasionya <math>r </math> (yaitu <math display="inline">a = \frac{1 + \sqrt{5}}{2}</math> dan <math display="inline">r = \frac{1 - \sqrt{5}}{2}</math>). Itu adalah sebuah deret satuan karena <math>a + r = 1</math> dan <math>\left| r \right| < 1</math>, itu adalah sebuah [[Bilangan Fibonacci|barisan Fibonacci]] yang digeneralisasi karena <math display="inline">1 + r = r^2</math>, dan itu adalah sebuah [[deret selang-seling]] karena <math>r < 0</math>.
|