Aritmetika: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Wagino Bot (bicara | kontrib)
k Bot: Merapikan artikel
k Fitur saranan suntingan: 3 pranala ditambahkan.
Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan Tugas pengguna baru Disarankan: tambahkan pranala
Baris 15:
[[Angka Yunani]] digunakan oleh [[Archimedes]], [[Diophantus]] dan lainnya dalam [[notasi posisi]] yang tidak jauh berbeda dari notasi modern. Orang Yunani kuno tidak memiliki simbol nol sampai periode Helenistik, dan mereka menggunakan tiga set simbol terpisah sebagai [[digit numerik|digit]]: satu set untuk tempat satuan, satu untuk tempat puluhan, dan satu untuk ratusan. Untuk tempat ribuan, mereka akan menggunakan kembali simbol untuk tempat satuan, dan seterusnya. Algoritma penjumlahan mereka identik dengan metode modern, dan algoritma perkaliannya hanya sedikit berbeda. Algoritme pembagian panjangnya sama, dan [[Metode penghitungan akar kuadrat#Penghitungan digit demi digit|algoritme akar kuadrat digit demi digit]], populer digunakan baru-baru ini pada abad ke-20, dikenal oleh Archimedes (yang mungkin telah menemukannya). Dia lebih memilihnya daripada [[Metode Heron]] dari perkiraan berturut-turut karena, setelah dihitung, sebuah digit tidak berubah, dan akar kuadrat dari kuadrat sempurna, seperti 7485692. Untuk bilangan dengan bagian pecahan, seperti 546,934, mereka menggunakan pangkat negatif 60 bukan pangkat negatif 10 untuk bagian pecahan 0,934.<ref>''Karya Archimedes'', Bab IV, ''Aritmatika di Archimedes'', diedit oleh T.L. Heath, Dover Publications Inc, New York, 2002.</ref>
 
Orang Cina kuno memiliki studi aritmatika lanjutan yang berasal dari Dinasti Shang dan berlanjut hingga [[Dinasti Tang]], dari angka dasar hingga aljabar lanjutan. The orang Cina kuno menggunakan notasi posisi yang mirip dengan orang Yunani. Karena mereka juga kekurangan simbol untuk [[nol]], mereka memiliki satu set simbol untuk tempat satuan, dan set kedua untuk puluhan. Untuk tempat ratusan, mereka kemudian menggunakan kembali simbol untuk tempat satuan, dan seterusnya. Simbol mereka didasarkan pada [[batang penghitung]] kuno. Waktu pasti di mana orang Tionghoa mulai menghitung dengan representasi posisi tidak diketahui, meskipun diketahui bahwa adopsi dimulai sebelum 400 SM.<ref>Joseph Needham, ''Sains dan Peradaban di Cina'', Vol. 3, p. 9, Cambridge University Press, 1959.</ref> Orang Cina kuno adalah orang pertama yang menemukan, memahami, dan menerapkan angka negatif secara bermakna. Ini dijelaskan di ''[[Sembilan Bab tentang Seni Matematika]]'' (''Jiuzhang Suanshu''), yang ditulis oleh [[Liu Hui]] berasal dari abad ke-2 SM.
 
Perkembangan bertahap dari [[sistem angka Hindu-Arab]] secara independen menciptakan konsep nilai tempat dan notasi posisi, yang menggabungkan metode sederhana untuk komputasi dengan basis desimal, dan penggunaan digit yang mewakili [[0 (angka)|0]]. Hal ini memungkinkan sistem untuk secara konsisten mewakili bilangan bulat besar dan kecil, sebuah pendekatan yang pada akhirnya menggantikan semua sistem lainnya. Di awal {{nowrap|Abad ke-6 Masehi,}} matematikawan asal India [[Aryabhata]] memasukkan versi yang ada dari sistem ini dalam karyanya, dan bereksperimen dengan notasi yang berbeda. Pada abad ke-7, [[Brahmagupta]] menetapkan penggunaan 0 sebagai bilangan terpisah, dan menentukan hasil perkalian, pembagian, penambahan dan pengurangan nol dan semua bilangan lainnya — kecuali untuk hasil [[pembagian dengan nol]]. Sesamannya, uskup [[Kristen Siria|Siria]] [[Severus Sebokht]] (650 M) berkata, "Orang India memiliki metode perhitungan yang tidak dapat dipuji oleh satu kata pun. Sistem matematika rasional mereka, atau metode perhitungan mereka. Maksud saya sistemnya menggunakan sembilan simbol."<ref>Referensi: Revue de l'Orient Chretien oleh François Nau hlm. 327–338. (1929)</ref> Orang Arab juga mempelajari metode baru ini dan menyebutnya ''hesab''.
Baris 42:
Penjumlahan, dilambangkan dengan simbol <math>+</math>, adalah operasi aritmatika yang paling dasar. Dalam bentuk sederhananya, penjumlahan menggabungkan dua angka, '' penjumlahan '' atau ''[[Suku (matematika)|suku]]'', menjadi satu angka, ''jumlah'' dari angka-angka tersebut (seperti {{math|2 + 2 {{=}} 4}} atau {{math|3 + 5 {{=}} 8}}).
 
Menambahkan banyak angka secara tak terbatas dapat dipandang sebagai penjumlahan sederhana yang berulang; prosedur ini dikenal sebagai [[penjumlahan]], istilah yang juga digunakan untuk menunjukkan definisi untuk "menambahkan bilangan tak terhingga" dalam [[deret (matematika)|deret tak hingga]]. Penambahan berulang dari angka [[1 (angka)|1]] adalah bentuk paling dasar dari [[menghitung]]; hasil penambahan {{math|1}} biasanya disebut [[fungsi penerus|penerus]] dari [[bilangan asli]].
 
Penjumlahan adalah [[komutatif]] dan [[asosiatif]], jadi urutan penambahan banyak suku tidak menjadi masalah. [[Elemen identitas]] untuk [[operasi biner]] adalah angka yang, jika digabungkan dengan angka apa pun, menghasilkan angka yang sama dengan hasil. Menurut aturan penambahan, penambahan {{math|0}} ke nomor manapun menghasilkan nomor yang sama, jadi {{math|0}} adalah [[identitas aditif]].<ref name=":0" /> The ''[[elemen invers|invers]] dari sebuah bilangan'' sehubungan dengan sebuah [[operasi biner]] adalah bilangan yang, jika digabungkan dengan bilangan apa pun, menghasilkan identitas sehubungan dengan operasi ini. Jadi, kebalikan dari bilangan sehubungan dengan penjumlahan ([[pembalikan aditif]], atau bilangan kebalikannya) adalah bilangan yang menghasilkan identitas penjumlahan, {{math|0}}, ketika ditambahkan ke nomor asli; terlihat jelas bahwa untuk semua bilangan <math> x </math>, ini adalah negatif dari <math> x </math> (dilambangkan <math>-x</math>).<ref name=":0" /> Misalnya, aditif invers {{math|7}} adalah {{math|−7}}, maka {{math|7 + (−7) {{=}} 0}}.
Baris 85:
== Teorema dasar aritmetika ==
{{main|Teorema dasar aritmetika}}
'''Teorema dasar aritmatika'''menyatakan bahwa bilangan bulat apa pun yang lebih besar dari 1 memiliki [[faktorisasi prima]] unik (representasi bilangan sebagai hasil kali faktor prima), tidak termasuk urutan faktor. Misalnya, 252 hanya memiliki satu faktorisasi prima:
 
:252 = 2{{sup|2}} × 3{{sup|2}} × 7{{sup|1}}