Teorema binomial: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k →Referensi: clean up, removed stub tag |
Fitur saranan suntingan: 3 pranala ditambahkan. Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Tugas pengguna baru Disarankan: tambahkan pranala |
||
Baris 11:
Peristiwa-peristiwa khusus terkait teorema binomial yang diketahui sejak zaman kuno diikhtisarkan berikut ini:
Abad ke-4 SM [[[[Matematika Yunani|matematikawan Yunani]]]] [[Euklides]] menyebutkan kasus khusus teorema binomial untuk eksponen 2.<ref name=wolfram>{{cite web|url=http://mathworld.wolfram.com/BinomialTheorem.html|title=Binomial Theorem|website=Wolfram MathWorld|last=Weisstein|first=Eric W.}}</ref><ref name="Coolidge">{{cite journal|url=http://www.jstor.org/pss/2305028|title=The Story of the Binomial Theorem|first=J. L.|last=Coolidge|journal=The American Mathematical Monthly|volume=56|issue=3|date=1949|pp=147–157|doi=10.2307/2305028}}</ref> Ada bukti bahwa teorema binomial untuk [[kubus]] telah diketahui pada abad ke-6 di [[India]].<ref name=wolfram /><ref name="Coolidge" />
Koefisien binomial, seperti jumlah kombinasi yang menunjukkan banyak cara untuk memilih ''k'' objek dari ''n'' tanpa penggantian, telah menjadi perhatian orang-orang Hindu kuno. Referensi paling awal yang diketahui mengenai permasalahan kombinasi ini adalah ''Chandaḥśāstra'' karya penulis Hindu, [[Pingala]] (sekitar 200 SM), yang memuat suatu metode untuk solusinya.<ref name=Chinese>{{cite book|title=A history of Chinese mathematics |author1=Jean-Claude Martzloff|author2=S.S. Wilson|author3=J. Gernet|author4=J. Dhombres|publisher=Springer|year=1987}}</ref>{{rp|230}} Seorang peneliti bernama [[Halayudha]] dari abad ke-10 M menjelaskan mengenai metode ini menggunakan yang kini dikenal sebagai [[segitiga Pascal]].<ref name=Chinese /> Pada abad ke-6 M, matematikawan Hindu mungkin telah mengetahui cara menunjukkannya dalam sebuah persamaan <math>\frac{n!}{(n-k)!k!}</math>,<ref name="Biggs">{{cite journal|last=Biggs|first=N. L.|title=The roots of combinatorics|journal=Historia Math. |volume=6 |date=1979 |issue=2|pp=109–136|doi=10.1016/0315-0860(79)90074-0}}</ref> dan suatu pernyataan yang jelas mengenai aturan ini dapat ditemukan dalam naskah abad ke-12 ''Lilavati'' karya [[Bhāskara II|Bhaskara]].<ref name="Biggs" />
Baris 81:
=== Penjelasan geometris ===
[[Berkas:binomial expansion visualisation.svg|jmpl|300px|Visualisasi ekspansi binomial hingga pangkat 4]]
Untuk setiap ''a'' dan ''b'' bernilai positif, teorema binomial dengan ''n'' = 2 adalah fakta bukti geometris bahwa sebuah bujur sangkat dengan sisi {{nowrap|''a'' + ''b''}} dapat dipotong menjadi sebuah bujur sangkar dengan sisi ''a'', sebuah bujur sangkar dengan sisi ''b'', dan dua [[persegi panjang]] dengan sisi ''a'' dan ''b''. Dengan ''n'' = 3, teorema binomial menyatakan bahwa sebuah kubus dengan sisi {{nowrap|''a'' + ''b''}} dapat dipotong-potong menjadi sebuah kubus dengan sisi ''a'', sebuah kubus dengan sisi ''b'', tiga buah kotak persegi panjang berdimensi ''a''×''a''×''b'', dan tiga buah kotak persegi panjang berdimensi ''a''×''b''×''b''.
Dalam [[kalkulus]], gambar ini juga memberikan bukti geometris bahwa [[turunan]] <math>(x^n)'=nx^{n-1}:</math><ref name="barth2004">{{cite journal | last = Barth | first = Nils R.| title = Computing Cavalieri's Quadrature Formula by a Symmetry of the ''n''-Cube | doi = 10.2307/4145193 | jstor = 4145193 | journal = The American Mathematical Monthly| publisher = Mathematical Association of America| issn = 0002-9890| volume = 111| issue = 9| pages = 811–813 | date=2004 | pmid = | pmc =| postscript = , [http://nbarth.net/math/papers/barth-01-cavalieri.pdf salinan penulis], [http://nbarth.net/math/papers/ penjelasan dan sumber lebih lanjut]}}</ref> jika ditentukan <math>a=x</math> dan <math>b=\Delta x,</math> dengan menginterpretasi ''b'' sebagai suatu perubahan yang sangat kecil (mendekati nol) dalam ''a,'' maka gambar ini menunjukkan perubahan yang sangat kecil (mendekati nol) dalam volume sebuah hiperkubus berdimensi ''n'', <math>(x+\Delta x)^n,</math> dengan suku koefisien linearnya (dalam <math>\Delta x</math>) adalah <math>nx^{n-1},</math> wilayah dengan ''n'' permukaan, dimensi masing-masing <math>(n-1):</math>
|