H3K9me2: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Polyharmony (bicara | kontrib) Dibuat dengan menerjemahkan halaman "H3K9me2" |
Polyharmony (bicara | kontrib) k Penambahan wikifikasi |
||
Baris 1:
[[Berkas:Methylation-lysine.PNG|jmpl|Kata "'''dimetilasi'''" menunjukkan adanya tambahan '''dua gugus metil''' pada lisina seperti pada '''H3K9me2'''.]]
H3K9me2 adalah sebuah modifikasi [[Epigenetika|epigenetik]] kepada protein [[histon H3]]<nowiki/>dengan adanya [[Metilasi|dimetilasi]] pada residu [[lisina]] ke-9 di [[protein]] histon H3. H3K9me2 berhubungan kuat dengan aktivitas represi transkripsi<ref name="Histome H3K9me2">{{cite web|title=H3K9me2|url=http://www.actrec.gov.in/histome/ptm_sp.php?ptm_sp=H3K9me2|publisher=HIstome: The Histone Infobase|access-date=8 June 2018}}</ref><ref name="Nestler1">{{cite journal|date=October 2011|title=Transcriptional and epigenetic mechanisms of addiction|journal=Nature Reviews. Neuroscience|volume=12|issue=11|pages=623–37|doi=10.1038/nrn3111|pmc=3272277|pmid=21989194|quote=<!--ΔFosB has been linked directly to several addiction-related behaviors ... Importantly, genetic or viral overexpression of ΔJunD, a dominant negative mutant of JunD which antagonizes ΔFosB- and other AP-1-mediated transcriptional activity, in the NAc or OFC blocks these key effects of drug exposure<sup>14,22–24</sup>. This indicates that ΔFosB is both necessary and sufficient for many of the changes wrought in the brain by chronic drug exposure. ΔFosB is also induced in D1-type NAc MSNs by chronic consumption of several natural rewards, including sucrose, high fat food, sex, wheel running, where it promotes that consumption<sup>14,26–30</sup>. This implicates ΔFosB in the regulation of natural rewards under normal conditions and perhaps during pathological addictive-like states.
--><!--
ΔFosB serves as one of the master control proteins governing this structural plasticity. ... ΔFosB also represses G9a expression, leading to reduced repressive histone methylation at the cdk5 gene. The net result is gene activation and increased CDK5 expression. ... In contrast, ΔFosB binds to the c-fos gene and recruits several co-repressors, including HDAC1 (histone deacetylase 1) and SIRT 1 (sirtuin 1). ... The net result is c-fos gene repression. ... G9a and ΔFosB share many of the same target genes. ... Histone methylation is directly regulated by drugs of abuse as well: global levels of histone 3 lysine 9 dimethylation (H3K9me2) are reduced in the NAc after chronic cocaine37 and a genome-wide screen revealed alterations in H3K9me2 binding on the promoters of numerous genes in this brain region32; both increases and decreases were observed, indicating again that epigenetic modifications at individual genes often defy global changes. The global decrease in H3K9me2 in the NAc is likely mediated by cocaine-induced downregulation of two HMTs, G9a and G9a-like protein (GLP), which catalyze H3K9me2<sup>37</sup>. These adaptations mediate enhanced responsiveness to cocaine, as selective knockout or pharmacological inhibition of G9a in the NAc promotes cocaine-induced behaviors, whereas G9a overexpression has the opposite effect. G9a likewise mediates the ability of cocaine to increase the spine density of NAc MSNs<sup>37</sup> (Box 2). Interestingly, there is a functional feedback loop between G9a and ΔFosB: ΔFosB seems to be responsible for cocaine-induced suppression of G9a, and G9a binds to and represses the fosb promoter, such that G9a downregulation may promote the accumulation of ΔFosB observed after chronic cocaine<sup>37</sup>. In addition, G9a and ΔFosB share many of the same target genes. ... The mechanisms underlying such gene desensitization and priming remain incompletely understood; our hypothesis is that epigenetic mechanisms are crucial (Figure 3B). An subset of primed genes show reduced binding of G9a and H3K9me2 at their promoters in the NAc, suggesting the involvement of this epigenetic mark<sup>37</sup>. Desensitization of the c-fos gene in the NAc, discussed above and depicted in Figure 4, involves stable increases in the binding of ΔFosB, G9a, and related co-repressors, which—although not affecting steady-state levels of c-Fos mRNA—dramatically repress its inducibility to subsequent drug exposure<sup>91</sup>.-->|vauthors=Robison AJ, Nestler EJ}}
[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272277/figure/F4/ Figure 4: Epigenetic basis of drug regulation of gene expression]</ref><ref name="pmid26472529">{{cite journal|date=August 2015|title=Role of the Brain's Reward Circuitry in Depression: Transcriptional Mechanisms|journal=International Review of Neurobiology|volume=124|pages=151–70|doi=10.1016/bs.irn.2015.07.003|pmc=4690450|pmid=26472529|quote=Chronic social defeat stress decreases expression of G9a and GLP (G9a-like protein), two histone methyltransferases that catalyze the dimethylation of Lys9 of histone H3 (H3K9me2) (Covington et al., 2011), a mark associated with gene repression.|vauthors=Nestler EJ}}</ref>, jumlahnya lebih tinggi pada gen yang diam/inaktif dibandingkan gen aktif, tepatnya di daerah sekitar 10kb dekat situs mulai transkripsi.<ref>{{cite journal|display-authors=6|date=May 2007|title=High-resolution profiling of histone methylations in the human genome|journal=Cell|volume=129|issue=4|pages=823–37|doi=10.1016/j.cell.2007.05.009|pmid=17512414|vauthors=Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K|doi-access=free}}</ref> H3K9me2 menghambat ekspresi gen baik secara pasif (mengambat [[asetilasi]] yang memengaruhi penempelan [[RNA polimerase]] atau faktor regulasinya)<ref>{{cite journal|display-authors=6|date=July 2008|title=Combinatorial patterns of histone acetylations and methylations in the human genome|journal=Nature Genetics|volume=40|issue=7|pages=897–903|doi=10.1038/ng.154|pmc=2769248|pmid=18552846|vauthors=Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K}}</ref> maupun secara aktif (menarik penghambat transkripsi).<ref name="H3K9 methyltransferase G9a and the">{{cite journal|date=April 2011|title=H3K9 methyltransferase G9a and the related molecule GLP|journal=Genes & Development|volume=25|issue=8|pages=781–8|doi=10.1101/gad.2027411|pmc=3078703|pmid=21498567|vauthors=Shinkai Y, Tachibana M}}</ref><ref>{{cite journal|display-authors=6|date=April 2016|title=G9a/GLP Complex Maintains Imprinted DNA Methylation in Embryonic Stem Cells|journal=Cell Reports|volume=15|issue=1|pages=77–85|doi=10.1016/j.celrep.2016.03.007|pmc=4826439|pmid=27052169|vauthors=Zhang T, Termanis A, Özkan B, Bao XX, Culley J, de Lima Alves F, Rappsilber J, Ramsahoye B, Stancheva I}}</ref> H3K9me2 umumnya terbentang luas di DNA yang miskin gen, umumnya disebut ''Large Organised Chromatin K9 domains'' (LOCKS). Namun, H3K9me2 juga ditemukan pada daerah kaya gen (''genic'') maupun daerah antargen (''[[Intergenik|intergenic]]'').<ref>{{cite journal|date=January 2010|title=Reassessing the abundance of H3K9me2 chromatin domains in embryonic stem cells|journal=Nature Genetics|volume=42|issue=1|pages=4; author reply 5–6|doi=10.1038/ng0110-4|pmid=20037608|vauthors=Filion GJ, van Steensel B|doi-access=free}}</ref><ref>{{cite journal|date=July 2011|title=Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition|journal=Nature Structural & Molecular Biology|volume=18|issue=8|pages=867–74|doi=10.1038/nsmb.2084|pmc=3150339|pmid=21725293|vauthors=McDonald OG, Wu H, Timp W, Doi A, Feinberg AP}}</ref><ref name="Wen 246–250">{{cite journal|date=February 2009|title=Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells|journal=Nature Genetics|volume=41|issue=2|pages=246–50|doi=10.1038/ng.297|pmc=2632725|pmid=19151716|vauthors=Wen B, Wu H, Shinkai Y, Irizarry RA, Feinberg AP}}</ref><ref>{{cite journal|date=March 2009|title=LOCKing in Cellular Potential|journal=Cell Stem Cell|volume=4|issue=3|pages=192–4|doi=10.1016/j.stem.2009.02.007|pmid=19265653|vauthors=Jørgensen HF, Fisher AG|doi-access=free}}</ref> Proses sintesisnya dikatalisasi oleh [[G9a]], [[
== Nomenklatur ==
H3K9me2 berarti terjadi [[Metilasi|dimetilasi]] pada [[lisina]] 9 di subunit [[protein
{| class="wikitable" style="text-align:center"
|Singkatan
Baris 29:
yang ditambahkan
|}
== Memahami modifikasi histon ==
[[Genom]] sel [[Eukariota|eukariot]] dibungkus oleh protein khusus bernama [[histon]]. Kompleks ini dibentuk oleh [[kromatin]]. Struktur dasar dari kromatin adalah [[nukleosom]] yang terdiri dari inti [[histon oktamer]] (H2A, H2B, H3, dan H4), histon penghubung, dan sekitar 180 pasang basa [[DNA]]. Inti histon kaya akan residu [[lisina]] dan [[arginina]]. Ujung-C dari histon tadi berkontribusi kepada interaksi histon-histon dan interaksi DNA-histon. Sementara itu, ekor ujung-N merupakan tempat modifikasi pascatranslasi, seperti yang teramati pada H3K9me2.<ref>{{cite journal|date=December 2007|title=Multivalent engagement of chromatin modifications by linked binding modules|journal=Nature Reviews. Molecular Cell Biology|volume=8|issue=12|pages=983–94|doi=10.1038/nrm2298|pmc=4690530|pmid=18037899|vauthors=Ruthenburg AJ, Li H, Patel DJ, Allis CD}}</ref><ref>{{cite journal|date=February 2007|title=Chromatin modifications and their function|journal=Cell|volume=128|issue=4|pages=693–705|doi=10.1016/j.cell.2007.02.005|pmid=17320507|vauthors=Kouzarides T|doi-access=free}}</ref>
Baris 43 ⟶ 41:
* [[Heterokromatin]] [[H3K9me3]]
* [[Heterokromatin]] fakultatif H3K9me2
Genom manusia dianotasi dengan kondisi [[kromatin]]. Kondisi tadi dapat digunakan sebagai cara baru untuk menganotasi genom secara independen dari sekuens [[genom]]. Kondisi kromatin juga berguna untuk mengidentifikasi elemen regulator yang tidak memiliki sekuens yang jelas seperti ''[[Enhancer (genetik)|enhancer]]''. Tambahan level anotasi ini memungkinkan kita untuk memahami lebih dalam regulasi gen di sel spesifik.<ref>{{cite journal|display-authors=6|date=February 2015|title=Integrative analysis of 111 reference human epigenomes|journal=Nature|volume=518|issue=7539|pages=317–30|bibcode=2015Natur.518..317.|doi=10.1038/nature14248|pmc=4530010|pmid=25693563|vauthors=Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller MJ, Amin V, Whitaker JW, Schultz MD, Ward LD, Sarkar A, Quon G, Sandstrom RS, Eaton ML, Wu YC, Pfenning AR, Wang X, Claussnitzer M, Liu Y, Coarfa C, Harris RA, Shoresh N, Epstein CB, Gjoneska E, Leung D, Xie W, Hawkins RD, Lister R, Hong C, Gascard P, Mungall AJ, Moore R, Chuah E, Tam A, Canfield TK, Hansen RS, Kaul R, Sabo PJ, Bansal MS, Carles A, Dixon JR, Farh KH, Feizi S, Karlic R, Kim AR, Kulkarni A, Li D, Lowdon R, Elliott G, Mercer TR, Neph SJ, Onuchic V, Polak P, Rajagopal N, Ray P, Sallari RC, Siebenthall KT, Sinnott-Armstrong NA, Stevens M, Thurman RE, Wu J, Zhang B, Zhou X, Beaudet AE, Boyer LA, De Jager PL, Farnham PJ, Fisher SJ, Haussler D, Jones SJ, Li W, Marra MA, McManus MT, Sunyaev S, Thomson JA, Tlsty TD, Tsai LH, Wang W, Waterland RA, Zhang MQ, Chadwick LH, Bernstein BE, Costello JF, Ecker JR, Hirst M, Meissner A, Milosavljevic A, Ren B, Stamatoyannopoulos JA, Wang T, Kellis M|collaboration=Roadmap Epigenomics Consortium}}</ref>
Baris 70 ⟶ 67:
== Lihat juga ==
* [[Metilasi histon]]
* [[Metiltransferase histon]]
* [[Metilisina]]
== Referensi ==
|