Divergensi dari deret harmonik pertama kali dibuktikan dalam abad ke-14 oleh [[Nikolas Oresme|Nicole Oresme]],<ref>{{cite book|last=Oresme|first=Nicole|date=c. 1360|title=Quaestiones super Geometriam Euclidis|trans-title=Questions concerning Euclid's Geometry|authorlink=Nicole Oresme}}</ref> tetapi prestasi ini jatuh dalam ketidakjelassanketidakjelasan. Bukti-bukti diberikan dalam abad ke-17 oleh [[Pietro Mengoli]]<ref>{{cite book|last=Mengoli|first=Pietro|date=1650|title=Novae quadraturae arithmeticae, seu De additione fractionum|location=Bologna|publisher=Giacomo Monti|trans-title=New arithmetic quadrature (i.e., integration), or On the addition of fractions|chapter=Praefatio [Preface]|authorlink=Pietro Mengoli|chapter-url=https://books.google.com/books?id=f9eM5uQvRucC&pg=PP9}}Mengoli's proof is by contradiction:</ref> dan oleh [[Johann Bernoulli]],<ref>{{cite book|last=Bernoulli|first=Johann|date=1742|title=Opera Omnia|location=Lausanne & Basel|publisher=Marc-Michel Bousquet & Co.|at=vol. 4, p. 8|chapter=Corollary III of ''De seriebus varia''|authorlink=Johann Bernoulli|chapter-url=https://books.google.com/books?id=sxUOAAAAQAAJ&pg=PA6}}Johann Bernoulli's proof is also by contradiction. It uses a telescopic sum to represent each term {{sfrac|1|n}} as</ref> bukti terakhir dipublikasikan dan dipopoluerkandipopulerkan oleh saudara laki-lakinya [[Jacob Bernoulli]].<ref>{{cite book|last=Bernoulli|first=Jacob|date=1689|title=Propositiones arithmeticae de seriebus infinitis earumque summa finita|location=Basel|publisher=J. Conrad|trans-title=Arithmetical propositions about infinite series and their finite sums|authorlink=Jacob Bernoulli}}</ref><ref>{{cite book|last1=Bernoulli|first=Jacob|date=1713|url=https://books.google.com/books?id=CF4UAAAAQAAJ&pg=PA250|title=Ars conjectandi, opus posthumum. Accedit Tractatus de seriebus infinitis|location=Basel|publisher=Thurneysen|pages=250–251|trans-title=Theory of inference, posthumous work. With the Treatise on infinite series…|authorlink=Jacob Bernoulli}}From p. 250, prop. 16:</ref>
Menurut sejarah, barisan harmonik memiliki popularitas tertentu dengan arsitek-arsitek. Ini sanagatsangat khusus dalam periode [[Barok]], ketika arsitek-arsitek menggunakan mereka untuk medirikan [[Proporsi (arsitektur)|proporsi]] [[Gambar arsitektur#Denah lantai|denah lantai]], [[Gambaran arsitektur#Ketinggian|ketinggian]], dan untuk membangun hubungan harmonik antara detail arsitektur interior dan eksterior gereja dan istana.<ref>{{cite book|last=Hersey|first=George L.|title=Architecture and Geometry in the Age of the Baroque|pages=11–12, 37–51}}</ref>