Matematika murni: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Vygukt (bicara | kontrib)
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
Kim Nansa (bicara | kontrib)
Fitur saranan suntingan: 3 pranala ditambahkan.
 
Baris 10:
Plato beranggapan bahwa logistik (aritmetika) sesuai dengan kebutuhan pengusaha dan peperangan yang dikatakannya ''dengan belajar ''seni bilangan'' atau para pengusaha dan peperangan tidak akan pernah bisa mengetahui bagaimana dengan keadaan susunan kekuatan yang sebenarnya'' dibandingkan dngan aritmetika (teori bilangan) yang lebih sesuai bagi kebutuhan para filsuf ''karena telah mempunyai untuk muncul dari lautan perubahan dan berusaha untuk menangkap kebenaran''.<ref>{{cite book|first=Carl B.|last=Boyer|authorlink=Carl Benjamin Boyer|title=A History of Mathematics|url=https://archive.org/details/historymathemati00boye_328|edition=Second Edition|publisher=John Wiley & Sons, Inc.|year=1991|isbn=0471543977|chapter=The age of Plato and Aristotle|pages=[https://archive.org/details/historymathemati00boye_328/page/n105 86]|quote=Plato is important in the history of mathematics largely for his role as inspirer and director of others, and perhaps to him is due the sharp distinction in ancient Greece between arithmetic (in the sense of the theory of numbers) and logistic (the technique of computation). Plato regarded logistic as appropriate for the businessman and for the man of war, who "must learn the art of numbers or he will not know how to array his troops." The philosopher, on the other hand, must be an arithmetician "because he has to arise out of the sea of change and lay hold of true being."}}</ref>
 
[[Euklides|Euclid]] dari Alexandria, ketika ditanya oleh salah seorang siswaya tentang apa kegunaan untuk belajar mengenai [[geometri]] lalu Euclid meminta kepada pelayannya untuk memberikan ''threepence'' kepada siswa tersebut sambil mengatakan bahwa karena siswa tersebut mempunyai kebutuhan yang dapat membuat keuntungan dari apa yang siswa tersebut pelajari<ref>{{cite book|first=Carl B.|last=Boyer|authorlink=Carl Benjamin Boyer|title=A History of Mathematics|url=https://archive.org/details/historymathemati00boye_328|edition=Second Edition|publisher=John Wiley & Sons, Inc.|year=1991|isbn=0471543977|chapter=Euclid of Alexandria|pages=[https://archive.org/details/historymathemati00boye_328/page/n120 101]|quote=Evidently Euclid did not stress the practical aspects of his subject, for there is a tale told of him that when one of his students asked of what use was the study of geometry, Euclid asked his slave to hive the student threepence, "since he must make gain of what he learns."}}</ref> sedangkan seorang matematikawan [[Yunani]] yang bernama [[Apollonius dari Perga]] ketika ditanya tentang manfaat atas bagian dari kaidahnya di dalam Buku IV Conics dengan bangga ia menegaskan sebagai berikut <ref name="Apollonius">{{cite book|first=Carl B.|last=Boyer|authorlink=Carl Benjamin Boyer|title=A History of Mathematics|url=https://archive.org/details/historymathemati00boye_328|edition=Second Edition|publisher=John Wiley & Sons, Inc.|year=1991|isbn=0471543977|chapter=Apollonius of Perga|pages=[https://archive.org/details/historymathemati00boye_328/page/n171 152]|quote=It is in connection with the theorems in this book that Apollonius makes a statement implying that in his day, as in ours, there were narrow-minded opponents of pure mathematics who pejoratively inquired about the usefulness of such results. The author proudly asserted: "They are worthy of acceptance for the sake of the demonstrations themselves, in the same way as we accept many other things in mathematics for this and for no other reason." (Heath 1961, p.lxxiv).<br />The preface to Book V, relating to maximum and minimum straight lines drawn to a conic, again argues that the subject is one of those that seem "worthy of study for their own sake." While one must admire the author for his lofty intellectual attitude, it may be pertinently pointed out that s day was beautiful theory, with no prospect of applicability to the science or engineering of his time, has since become fundamental in such fields as terrestrial dynamics and celestial mechanics.}}</ref>
<blockquote>They are worthy of acceptance for the sake of the demonstrations themselves, in the same way as we accept many other things in mathematics for this and for no other reason.</blockquote>
And since many of his results were not applicable to the science or engineering of his day, Apollonius further argued in the preface of the fifth book of ''Conics'' that the subject is one of those that "...seem worthy of study for their own [[sake]]."<ref name="Apollonius"/>
 
=== Abad ke-19 ===
Istilah itu sendiri diabadikan dalam judul lengkap [[Sadleirian Profesor Matematika Murni]] kadang-kadang disebut pula sebagai [[Sadleirian, Profesor Matematika Murni|Sadlerian Chair]],<ref>For example, [[Encyclopaedia Britannica]], 15th edition</ref> sebagai pencetus (sebagai [[profesor]]) pada pertengahan abad kesembilan belas. Gagasannya tentang disiplin terpisah ''matematika murni'' mungkin telah muncul pada saat itu.
 
Generasi dari [[Carl Friedrich Gauss|Gauss]] tidak dapat menyentuh perbedaan antara ''murni'' dengan ''terapan''. Kemudian pada tahun-tahun berikutnya, spesialisasi dan profesionalisasi (terutama di [[Weierstrass]] pendekatan untuk melakukan [[analisis]] [[matematis]]) telah membuka celah yang menjadikannya menjadi lebih jelas.