Berlian buatan: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan
Tidak ada ringkasan suntingan
Baris 16:
===Proyek Berlian General Electric===
{{peacock}}
Di tahun 1941, sebuah persetujuan dibuat antara [[General Electric]] (GE), Norton, dan perusahan Carborundum untuk mengembangkan berlian sintetis lebih jauh lagi. Mereka mampu memanaskan karbon hingga 3000 oC<sup>o</sup>C di bawah tekanan 3,5 [[gigapascal]] selama beberapa detik. Segera ketika itu, [[Perang Dunia II]] mempengaruhi proyek tersebut. Proyek ini dimulai kembali di tahun 1951 di Laboratorium Schenectady milik GE, dan kelompok perusahaan berlian bertekanan tinggi dibentuk oleh [[F. P. Bundy]] dan [[H. M. Strong]]. [[Tracy Hall]] dan yang lainnya ikut dalam kelompok ini segera setelah itu.
 
Kelompok Schenectady mengembangkan landasan tempa yang dirancang oleh [[Percy Bridgman]], yang menerima [[Hadiah Nobel]] karena hasil karyanya di tahun 1946. Bundy dan Strong melakukan peningkatan pertama, lalu dilakukan lebih banyak lagi oleh Hall. Kelompok GE menggunakan landasan tempa [[tungsten karbida]] dalam tekanan [[hidrolik]] untuk menekan sample yang mengandung karbon dalam kontainer ''catlinite'', kerikil yang telah melalui proses dikeluarkan dari kontainer menuju suatu wadah. Tim merekam sintesis berlian dalam satu percobaan, namun eksperimen tidak dapat diulang karena kondisi sintesis yang tidak pasti.
 
Hall mencapai kesuksesan komersial yang pertama dalam mensintesis berlian pada 16 Desember 1954, dan diumumkan pada bulan Februari 1955. Terobosannya memanfaatkan sabuk tekan, yang mempu menghasilkan tekanan hingga 10 GPa dan temperatur di bawah 2000 <sup>o</sup>C. Sabuk tekan menggunakan kontainer [[pyrophyllite]] di mana [[grafit]] dilarutkan dalam campuran [[nikel]], [[kobalt]], dan [[besi]] cair. Logam-logam tersebut berperan sebagai katalis larutan, yang melarutkan karbon serta mempercepat konversi menjadi berlian. Berlian terbesar yang diproduksi berukuran o0,15 mm, terlalu kecil dan secara visual tidak sempurna bagi penjual berlian, namun berguna sebagai abrasif di industri. Rekan kerja Hall dapat mereplikasi pekerjaannya, dan penemuannya dipublikasikan pada jurnal ''[[Nature (jurnal)|Nature]]''. Ia orang pertama yang mampu menumbuhkan berlian sintetis dan dapat diulang, diverifikasi, dan dengan proses yang didokumentasi dengan baik. Ia meninggalkan GE di tahun 1955, dan tiga tahun kemudian mendirikan bagian baru dalam sintesis berlian, tekanan tetrahedral dengan empat landasan tempa, untuk menghindari pelanggaran pada paten miliknya yang lalu, yang masih dimiliki GE. Hall menerima penghargaan dari [[American Chemical Society]] atas penemuan kreatifnya dalam mensintesis berlian.
 
Sebuah usaha sintesis berlian dilakukan pada 16 Februari 1953 di [[Stockholm]] oleh ASEA ([[Allmänna Svenska Elektriska Aktiebolaget]]), sebuah perusahaan [[manufaktur]] barang elektronik. Dimulai di tahun 1949, ASEA mempekerjakan sebuah tim yang terdiri dari lima ilmuwan dan insinyur sebagai bagian dari proyek pembuatan berlian rahasia yang dinamai [[QUINTUS]]. Tim menggunakan ''bulky split-sphere apparatus'' yang didesain oleh [[Baltzar von Platen]] dan [[Anders Kämpe]]. Tekanan dipertahankan dalam alat yang diperkirakan sebesar 8,4 GPa selama satu jam. Sejumlah kecil berlian diproduksi, namun bukan yang berukuran batu perhiasan. Hasil pekerjaannya tidak dilaporkan hingga tahun 1980an. Selama tahun 1980an, kompetitor baru bermunculan di Korea, dengan nama perusahaan [[Iljin Diamond]], dan lalu diikuti ratusan perusahaan asal China. Iljin Diamond dapat mensintesis berlian dengan menyelewengkan rahasia perdagangan dari GE melalui mantan pegawai GE asal Korea.
Baris 28:
Berlian yang diproduksi ketika itu selalu berwarna kuning hingga coklat akibat kontaminasi [[nitrogen]]. Inklusi atau penambahan mineral umum dilakukan. Memindahkan seluruh nitrogen dari proses dengan menambahkan [[alumunium]] atau [[titanium]] menghasilkan berlian tak berwarna, dan pemindahan nitrogen disertai penambahan [[boron]] akan menghasilkan berlian berwarna biru. Memindahkan nitrogen dari proses juga memperlambat proses dan mengurangi kualitas kristalin, sehingga proses umumnya dilakukan dengan kehadiran nitrogen dalam proses.
 
Meski berlian GE dan berlian alami secara kimiawi identik, sifat fisik antara keduanya tidaklah sama. Berlian tak berwarna menghasilkan efek [[fluoresensi]] dan [[fosforesensi]] yang kuat di bawah [[sinar ultra violet]] dengan panjang gelombang pendek, namun menjadi inert ketika diberi sinar UV dengan panjang gelombang yang panjang. Di antara berlian alami, hanya berlian berwarna biru yang langka yang menghasilkan efek seperti ini. Tidak seperti berlian alami, berlian GE menunjukkan fluoresensi kuning yang kuat di bawah [[sinar X]]. [[De Beers]] Diamond Research Laboratory telah menumbuhkan berlian hingga 25 karat (5 gram) untuk tujuan penelitian. Kondisi HPHT yang stabil dijaga selama enam minggu untuk menghasilkan berlian berkualitas tinggi seperti ini, namun jika untuktuntuk ujuantujuan komersial, penumbuhan biasanya dihentikan ketika berlian mencapai berat 1 karat (0,2 gram) hingga 1,5 karat (0,3 gram).
 
Di tahun 1950an, penelitian dimulai di [[Uni Soviet]] dan [[Amerika Serikat]] dalam penumbuhan berlian dengan [[pirolisis]] gas [[hidrokarbon]] pada temperatur yang relatif rendah, yaitu 800 <sup>o</sup>C. Metode ini dinamakan deposisi uap kimia (chemical vapor deposition, CVD). [[Deryagin]] dan [[Fedoseev]] secara sukses membuat lapisan berlian dari material non berlian ([[silikon]] dan logam), yang memicu penelitian besar-besaran dalam penelitian pembuatan berlian yang murah.
Baris 43:
===Kekerasan===
Berlian adalah material terkeras, di mana kekerasan didefinisikan sebagai ketahanan terhadap gesekan dan diperingkatkan dalam nilai 1 hingga 10 (terkeras) menggunakan [[skala Mohs]]. Berlian memiliki kekerasan 10 dalam skala ini. Kekerasan berlian dintetis bergantung pada kemurnian dan kesempurnaan struktur kristal. Berlian nanokristalin yang diproduksi melalui CVD dapat memiliki tingkat kekerasan antara 30 hingga 75 persen dari berlian sesungguhnya, dan tingkat kekerasan dapat diatur dengan aplikasi spesifik. Beberapa berlian sintetis kristal tunggal dan berlian nanokristalin HPHT dapat memiliki tingkat kekerasan melebihi berlian alami.
 
===Ketidakmurnian dan penambahan===
Setiap berlian mengandung [[atom]]-atom selain karbon dalam konsentrasi yang mampu dideteksi oleh berbagai teknik analitik. Atom-atom tersebut dapat berkumpul menjadi fase-fase makroskopik yang disebut ''inclusion''. Ketidakmurnian umumnya hal yang dihindari, namun berlian dapat dibuat tidak murni secara sengaja untuk mendapatkan sifat tertentu dari berlian. Misalnya, berlian murni adalah [[insulator]] [[listrik]], namun berlian dengan tambahan [[boron]] merupakan [[konduktor]] listrik (dan dapat menjadi [[superkonduktor]]), menjadikannya dapat digunakan dalam aplikasi elektronik. Keberadaan [[nitrogen]] dapat mencegah dislokasi, menjadikan berlian memiliki [[kekerasan]] dan [[ketangguhan]] yang meningkat.
 
===Konduktivitas termal===
Tidak seperti kebanyakan insulator listrik, berlian murni adalah konduktor panas yang baik karena [[ikatan kovalen]] yang kuat di dalam kristalnya. Konduktivitas termal berlian alami adalah yang tertinggi diantara material solid yang pernah diketahui. Kristal tunggal berlian sintetis dengan kemurnian 99,9% memiliki konduktivitas termal sebesar 30 W/cm K pada temperatur ruangan, lima kali lebih tinggi dibandingkan [[tembaga]] yang merupakan logam penghantar panas yang baik. Konduktivitas termal berlian akan berkurang sebanyak 1,1% dengan kehadiran atom [[karbon-13]].
 
Konduktivitas termal berlian dimanfaatkan oleh para penjual batu perhiasan dan ahli batu perhiasan untuk membedakan berlian asli dengan imitasi. Mereka menggunakan alat yang terdiri dari dua [[termistor]] bertenaga baterai. Termistor yang satu memanaskan, sedangkan yang lainnya mengukur temperatur.
 
==Pranala luar==