Pangkat dua: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k Mengembalikan suntingan oleh 182.1.134.244 (bicara) ke revisi terakhir oleh Ariandi Lie Tag: Pengembalian Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
Fitur saranan suntingan: 3 pranala ditambahkan. Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan Tugas pengguna baru Disarankan: tambahkan pranala |
||
Baris 52:
Konsep pengkuadratan berperan penting dalam [[Medan hingga|lapangan hingga]] <math>\mathbf{Z}/p\mathbf{Z}</math>, yang dibentuk dari bilangan-bilangan bulat [[Operasi modulus|modulo]] [[bilangan prima]] ganjil <math>p</math>. Elemen tak-nol dari lapangan ini disebut ''[[residu kuadratik]]'' jika ia merupakan kuadrat di <math>\mathbf{Z}/p\mathbf{Z}</math>, dan selain itu disebut ''nonresidu kuadratik''. Nol, walau merupakan kuadrat, tidak dianggap sebagai residu kuadratik. Setiap lapangan hingga jenis ini memiliki tepat <math>(p-1)/2</math> residu kuadratik dan tepat <math>(p-1)/2</math> nonresidu kuadratik. Residu-residu kuadratik membentuk sebuah [[Grup (matematika)|grup]] terhadap perkalian. Sifat-sifat dari residu kuadrat banyak digunakan dalam [[teori bilangan]].
Fungsi kuadrat terdefinisi di sembarang [[Lapangan (matematika)|lapangan]] maupun [[Gelanggang (matematika)|gelanggang]]. Elemen dari hasil pemetaan dari fungsi ini disebut ''kuadrat'', sedangkan [[elemen invers]] pemetaannya disebut [[Akar kuadrat|''akar kuadrat'']]. Lebih umum, fungsi kuadrat pada gelanggang yang berbeda dapat memiliki sifat-sifat yang berbeda, yang dapat digunakan untuk mengklasifikasikan gelanggang.
Elemen nol mungkin merupakan kuadrat dari suatu elemen tak-nol. [[Gelanggang komutatif]] yang setiap kuadrat elemen tak-nolnya tidak bernilai nol, disebut dengan [[gelanggang tereduksi]]. Secara umum, [[ideal radikal]] adalah [[Ideal (teori gelanggang)|ideal]] <math>I</math> yang memenuhi sifat: <math>x^2 \in I</math> mengakibatkan <math>x \in I</math>.
Baris 78:
[[Produk dot|Hasil kali titik]] dari sembarang [[vektor Euklides]] dengan dirinya sendiri, akan sama dengan kuadrat dari panjang vektor tersebut: <math>\mathbf{v}\cdot \mathbf{v} = \lVert \mathbf{v} \rVert^2</math>. Sifat ini selanjutnya dapat diperumum ke [[bentuk kuadratik]] dalam [[ruang vektor]] dengan menggunakan bantuan [[hasil kali dalam]]. Secara fisik, sifat ini menunjukkan hubungan antara [[momen inersia]] dengan jarak (ukuran) benda.
Terdapat tak hingga banyaknya [[tripel Pythagoras]], yakni pasangan tiga bilangan bulat positif yang kuadrat bilangan terbesarnya sama dengan jumlah dari kuadrat dua bilangan yang lain. Setiap tripel ini menghasilkan [[segitiga siku-siku]] yang panjang setiap sisinya berupa bilangan bulat.
== Penggunaan lainnya ==
Konsep pengkuadratan berperan penting dalam aljabar maupun hampir di semua bidang matematika lainnya, juga dalam [[fisika]]. Bilangan kuadrat dapat diperumum ke beberapa sistem bilangan lainnya. Pada sistem [[bilangan rasional]], bilangan kuadrat dapat didefinisikan sebagai bilangan yang dapat dituliskan sebagai rasio dari dua bilangan bulat kuadrat; sebagai contoh, <math>\textstyle \frac{4}{9} = \left(\frac{2}{3}\right)^2</math>.
Dalam [[analisis regresi]], metode [[kuadrat terkecil]] umum dipakai dalam sistem ''overdetermined'' (sistem yang memiliki lebih banyak persamaan ketimbang variabel).
|