1 (angka): Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k Perbaikan templat dan peng-kategori-an |
k →Matematika: menyederhanakan kalimat |
||
Baris 51:
Bilangan 1 adalah [[bilangan asli]] pertama setelah [[0 (angka)|0]]. Setiap bilangan asli (termasuk 1) dibangun oleh [[Fungsi penerus|penerusnya]], yang berarti dengan menambahkan 1 ke bilangan asli sebelumnya. Bilangan 1 merupakan [[identitas perkalian]] dari [[bilangan bulat]], [[bilangan real]], dan [[bilangan kompleks]]. Sifat ini mengartikan bahwa perkalian sembarang bilangan <math>n</math> dengan 1 tidak akan mengubah hasil (<math>1\times n = n\times 1 = n</math>). Akibatnya, hasil dari [[Pangkat dua|kuadrat]] (<math>1^2</math>), [[akar kuadrat]] (<math>\sqrt{1}</math>), dan sembarang perpangkatan lainnya dari 1, adalah 1.{{sfn|Colman|1912|loc=chapt.2|pp=9–10}} Bilangan 1 juga merupakan [[faktorial]] dari dirinya (<math>1!=1</math>), dan 0! sama saja bernilai 1. Hasil tersebut merupakan kasus spesial dari [[perkalian kosong]].{{sfn|Graham|Knuth|Patashnik|1994|p=111}} Walau 1 memenuhi definisi [[bilangan prima]] (bilangan yang dapat dibagi oleh 1 dan dirinya sendiri, dalam hal ini 1), 1 tidak dianggap sebagai [[Bilangan prima#Primalitas dari satu|bilangan prima]] maupun [[bilangan komposit]] berdasarkan konvensi modern.{{sfn|Caldwell|Xiong|2012|pp=8–9}}
Konstruksi-konstruksi matematis dari bilangan asli merepresentasikan 1 dengan cara yang berbeda-beda. Sebagai contoh, dalam formulasi asli [[Aksioma Peano|aksioma-aksioma Peano]] oleh [[Giuseppe Peano]],
Dalam banyak permasalahan matematika dan rekayasa, nilai-nilai numerik biasanya [[Solusi ternormalisasi (matematika)|dinormalisasikan]] ke dalam [[selang satuan]] <math> [0,1] </math>; angka 1
Bilangan 1 merupakan nilai dari [[konstanta Legendre]], sebuah konstanta yang diperkenalkan oleh [[Adrien-Marie Legendre]] pada tahun 1808 untuk menyatakan [[Analisis asimtotik|perilaku asimtotik]] dari [[fungsi penghitung bilangan prima]].{{sfn|Pintz|1980|pp=733-735}} [[Konjektur Weil tentang bilangan Tamagawa]] berbunyi bahwa [[bilangan Tamagawa]] <math>\tau(G)</math> (suatu pengukuran geometris dari suatu [[grup aljabar]] linear terhubung atas [[Lapangan bilangan aljabar|lapangan bilangan]] global) bernilai 1 untuk semua grup terhubung sederhana (grup yang [[Keterhubungan homotopis|terhubung-lintasan]] tanpa [[Keterhubungan homotopis#Definisi menggunakan lubang|lubang]]).{{sfn|Gaitsgory|Lurie|2019|pp=204–307}}{{sfn|Kottwitz|1988}}
|