Elektrostatik: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Ap2998 (bicara | kontrib)
e
Ap2998 (bicara | kontrib)
Tidak ada ringkasan suntingan
Baris 73:
U = U1 + U2 + U3 + U4
Misalkan penghimpunan titik–titik muatan itu kita mulai dengan mengambil titik muatan q1 dari tempat jauh tak terhingga. Untuk ini tidak perlu melakukan usaha, sebab tidak ada tidak ada medan listrik yang harus diatasinya. Tetapi untuk mengambil q2 dari tempat jauh tak terhingga ke tempatnya yang diperlukan usaha karena diperlukan gaya untuk mengatasi medan listrik yang ditimbulkan oleh q1 dan usaha itu adalah sebesar U2 = q2V21 dimana V21 adalah potensial listrik ditempat q2 karena adanya muatan listrik q1, demikian seterusnya secara umum kita dapat menulis :
<math>U_i =\sum_{1>j} q_iV_ij</math> dan <math>U = \sum_{1} U_i</math>
Dimana U adalah tenaga sistem yang dimaksud.
Adapun potensial listrik ditempat qi diberikan oleh jumlah yang ada pada masing–masing muatan lainnya, yaitu:
<math>V_i =\sum_{1-j} V_ij </math>
Dilain pihak qiVij = qjVji
 
==Kapasitansi Konduktor ==
Yang dimaksud dengan kapasitansi adalah ukuran kapasitas, yakni kemampuan menampung muatan listrik. Suatu konduktor kalau dimuati muatan listrik akan menjadi bermedan listrik dipermukaannya, namun muatan listrik yang ada padanya tidak ditolak keluar dan lepas dari konduktor sebab gaya medan elektrostatika itu diimbangi oleh gaya tarik muatan listrik yang tandanya berlawanan yang berasal dari atom–atom konduktor itu sendiri. Akan tetapi bila mana muatan listriknya terlalu banyak maka medan listrik yang ditimbulkannya akan menjadi kuat sehingga daya tarik dari atom–atom konduktor tidak lagi mampu mengatasi gaya tolak keluar konduktor. Akibatnya sebagian muatan listrik yang dimuatkan padanya menjadi lepas kembali karena konduktor itu tidak mampu menampung muatan listrik lebih lanjut.
Demikianlah hubungan kesebandingan antara kuat medan listrik dipermukaan konduktor dengan banyaknya muatan listrik yang dimuatkan ke konduktor tersebut, begitu pula antara potensial listrik konduktor itu dengan banyaknya muatan listrik yang dimuatkan.
Untuk merumuskan secara kongkrit, terlebih dahulu kita pelajari sifat konduktor yang berkaitan dengan kuat medan listrik dipermukaanya yang disebabkan oleh muatan listrik yang ada padanya.
 
1. Definisi Konduktor
Secara ekstrem, demi mudahnya pembahasan yang kita maksud dengan konduktor ialah bahan yang mengantarkan listrik dengan sempurna; yang berarti bahwa muatan listrik yang dimuatkan padanya akan bebas bergerak tanpa hambatan sedikitpun. Dengan definisi yang demikian maka konduktor memiliki sifat–sifat sebagai berikut:
a. Muatan listrik yang dimuatkan akan ada dipermukaan
Hal ini dengan mudah dapat dijelaskan berdasarkan gaya tolak–menolak diantara muatan–muatan listrik yang dimuatkan sehingga akan sejauh mungkin saling menjauhi, tetapi masih belum lepas keluar dari permukaan konduktor.
b. Arah medan listrik dipermukaan adalah tegak lurus dari permukaan itu
Seandainya arah medan listrik dipermukaan itu miring terhadap permukaan, maka muatan listrik yang ada di permukaan akan mengalami gaya medan karena adanya komponen medan listrik sepanjang arah yang menyinggung permukaan. Jadi dalam keadaan setimbang komponen medan listrik yang pada arah mendatar adalah nol, yang berarti medan listrik dipermukaan konduktor pasti arahnya tegak lurus permukaan.
c. Di dalam konduktor tidak ada medan listrik
Dengan menerapkan theorema Gauss dengan integrasi yang mencakup permukaan tepat dibawah permukaan konduktor seperti dijelaskan oleh Gambar 2.1. bagian c nilai integral itu adalah nol karena tidak bermuatan listrik sama sekali mengingat seluruh muatan listrik yang dimuatkan ada di permukaan konduktor. Seandainya didalam konduktor itu ada distribusi arah medan listrik, tentunya arahnya entah semua keluar entah semua masuk ke permukaan, sehingga nilai integralnya tidak sama dengan nol. Jadi nilai integral nol harus berarti bahwa kuat medan listrik nol yakni disembarang tempat dalam konduktor.
d. Konduktor adalah benda equipotensial
Karena tidak ada muatan listrik di dalam konduktor maka tidak diperlukan usaha untuk memindahkan listrik dari titik A ke titik B di dalam konduktor, yang berarti potensial listrik di A sama dengan yang ada di B juga tidak diperlukan usaha untuk memindahkan muatan listrik sembarang titik dipermukaan konduktor ke titik lainnya yang juga ada di permukaan konduktor sebab arah medan listrik di permukaan konduktor tegak lurus dengan permukaan. Jadi potensial listrik disemua titik di permukaan konduktor adalah sama dan juga sama dengan yang ada dalam konduktor. Dengan kata lain konduktor merupakan benda equipotensial; maksudnya potensial listriknya sama di mana–mana di dalam maupun di permukaan konduktor.
e. Muatan listrik yang dimuatkan ke konduktor berongga akan ada dipermukaan luarnya saja
Dengan pertolongan Gambar 2.1 bagian e kita amati bahwa dengan menerapkan theorema Gauss dengan integrasi yang meliputi luasan diantara rongga konduktor di dalam konduktor, nilai integral itu pasti sama dengan nol sebab kuat medan listrik dalam konduktor dimana–mana adalah nol, yang berarti bahwa luasan integrasi itu tidak mencakup muatan listrik, yang berarti pula tidak ada muatan listrik di permukaan rongga. Muatan listrik yang dimuatkan seluruhnya akan ada dipermukaan luar.
f. Kuat medan listrik di permukaan konduktor sebanding dengan rapat medan di tempat itu
Dengan pertolongan Gambar 2.1 bagian f kita amati bahwa dengan menerapkan theorema Gauss yang meliputi ke enam dinding segi empat, yang memberi kontribusi pada integrasi hanyalah permukaan atas saja karena hanya permukaan itu yang ditembus garis gaya. Seandainya luas permukaan itu adalah A, maka nilai integral Gauss itu adalah E.A yang harus sama dengan total muatan listrik yang tercakup dalam permitivitas medium, yaitu <math>\sigma</math>q. A bila <math>\sigma</math>q adalah rapat muatan listrik dipermukaan yang luasnya sudut tentu juga A. dengan demikian berlaku persamaan :