Sejarah perkembangan kalkulus bisa ditilik pada beberapa periode zaman, yaitu [[abad Kuno|zaman kuno]], [[abad Pertengahan|zaman pertengahan]], dan [[zaman modern]]. Pada periode zaman kuno, beberapa pemikiran tentang kalkulus integral telah muncul, tetapi tidak dikembangkan dengan baik dan sistematis. Perhitungan [[volume]] dan luas yang merupakan fungsi utama dari kalkulus integral bisa ditelusuri kembali pada
[[Papirus Matematika Moskwa|Papirus Moskwa]] [[Mesir]] (c. 1800 SM) di mana orang Mesir menghitung volume [[piramid]]a terpancung.<ref name=Aslaksen>Helmer Aslaksen. [http://www.math.nus.edu.sg/aslaksen/teaching/calculus.html Why Calculus?] [[Universitas Nasional Singapura|National University of Singapore]]. See </ref>. [[Archimedes]] mengembangkan pemikiran ini lebih jauh dan menciptakan [[heuristik]] yang menyerupai [[integral|kalkulus integral]].<ref>Archimedes, ''Method'', in ''The Works of Archimedes'' ISBN 978-0-521-66160-7</ref>
Pada zaman pertengahan, matematikawan [[India]], [[Aryabhata]], menggunakan konsep kecil takterhinggatak terhingga pada tahun [[499]] dan mengekspresikan masalah astronomi dalam bentuk [[persamaan diferensial]] dasar.<ref>[http://www-history.mcs.st-andrews.ac.uk/Biographies/Aryabhata_I.html Aryabhata the Elder]</ref> Persamaan ini kemudian mengantar [[Bhāskara II]] pada abad ke-12 untuk mengembangkan bentuk awal [[turunan]] yang mewakili perubahan yang sangat kecil takterhingga dan menjelaskan bentuk awal dari "[[Teorema Rolle]]".<ref>Ian G. Pearce. [http://turnbull.mcs.st-and.ac.uk/~history/Projects/Pearce/Chapters/Ch8_5.html Bhaskaracharya II.]</ref> Sekitar tahun [[1000]], matematikawan [[Irak]] [[Ibnu Haitham|Ibn al-Haytham]] (Alhazen) menjadi orang pertama yang menurunkan rumus perhitungan hasil jumlah pangkat empat, dan dengan menggunakan [[induksi matematika]], dia mengembangkan suatu metode untuk menurunkan rumus umum dari hasil pangkat integral yang sangat penting terhadap perkembangan kalkulus integral.<ref>Victor J. Katz (1995). "Ideas of Calculus in Islam and India", ''Mathematics Magazine'' '''68''' (3), pp. 163-174.</ref> Pada abad ke-12, seorang [[Persia]] [[Sharaf al-Din al-Tusi]] menemukan [[turunan]] dari [[fungsi kubik]], sebuah hasil yang penting dalam kalkulus diferensial. <ref>J. L. Berggren (1990). "Innovation and Tradition in Sharaf al-Din al-Tusi's Muadalat", ''Journal of the American Oriental Society'' '''110''' (2), pp. 304-309.</ref> Pada abad ke-14, [[Madhava dari Sangamagrama|Madhava]], bersama dengan matematikawan-astronom dari [[mazhab astronomi dan matematika Kerala]], menjelaskan kasus khusus dari [[deret Taylor]]<ref name="madhava">{{cite web
| publisher=School of Mathematics and Statistics University of St Andrews, Scotland |