Relativitas umum: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Luckas-bot (bicara | kontrib)
Baris 18:
Sebaliknya, seseorang dapat mengharapkan bahwa seketika berhasil diidentifikasi dengan memantau gerak benda sebenarnya dan mempertimbangkan gaya-gaya luar (seperti gaya [[elektromagnetik]] dan [[gesekan]]), gerak inersia dapat digunakan untuk menentukan geometri ruang dan juga [[waktu]]. Namun, akan terdapat ambiguitas ketika [[gravitasi]] diperhitungkan ke dalamnya. Menurut [[hukum gravitasi Newton]], terdapat apa yang disebut sebagai universalitas jatuh bebas, yaitu bahwa lintasan suatu benda yang jatuh bebas bergantung hanya pada posisi dan kecepatan awalnya, dan bukannya bergantung pada sifat-sifat bahan penyusunnya.<ref>See {{Harvnb|Will|1993|loc=section 2.4}} or {{Harvnb|Will|2006|loc=section 2}}.</ref> Versi yang lebih sederhana dapat dilihat pada percobaan elevator Einstein, yang digambarkan pada gambar di samping. Untuk seorang pengamat dalam ruang tertutup yang kecil, adalah tidak mungkin untuk menentukan apakah ruang itu berada dalam keadaan diam dalam suatu medan gravitasi ataukah ia berada di dalam roket yang dipercepat hanya dengan memetakan lintasan bola jatuh tersebut.<ref>Cf. {{Harvnb|Wheeler|1990|loc=chapter 2}}; similar accounts can be found in most other popular-science books on general relativity.</ref>
 
Disebabkan oleh universalitas jatuh bebas, tiada perbedaan terpantau yang dapat dipantau antara gerak inersial dengan gerak yang berada di bawah pengaruh gaya gravitasi. Ini kemudian mengarahkan kita pada suatu definisi gerak inersia yang baru, yaitu gerak inersia objek jatuh bebas yang berada di bawah pengaruh gaya gravitasi. Jenis gerak ini juga menentukan geometri ruang dan waktu. Gerak ini adalah gerak [[geodesik]] yang diasosiasikan dengan [[koneksi (matematika)|koneksi]] tertentu yang bergantung pada [[gradien]] [[potensial gravitasi]]. Ruang, dalam konstruksi ini, masih memiliki [[geometri Euklides]] yang seperti biasanya, namun ruang ''waktu'' secara keseluruhan menjadi lebih rumit. Seperti yang dapat ditunjukkan dengan menggunakan eksperimen pemikiran sederhana yang menelurusi lintasan partikel-partikel pengujian yang sedang jatuh bebas, hasil dari pemasukan vektor-vektor ruang waktu yang menandakan kecepatan suatu partikel akan bervariasi sesuai dengan lintasan partikel. Secara matematis, kita katakan bahwa koneksi NewtonianNewton tidaklah terintegralkan. Dari hal ini, seseorang dapat mendeduksi bahwa [[ruang waktu]] adalah melengkung. Akibatnya adalah perumusan geometri gravitasi NewtonianNewton yang hanya menggunakan konsep kovarian.<ref>See {{Harvnb|Ehlers|1973|loc=section 1.2}}, {{Harvnb|Havas|1964}}, and {{Harvnb|Künzle|1972}}. Eksperimen pemikiran ini pertama kali dideskripsikan di dalam {{Harvnb|Heckmann|Schücking|1959}}.</ref> Dalam deskripsi geometri ini, [[efek pasang surut]] - yaitu percepatan relatif benda yang jatuh bebas - berhubungan dengan turunan koneksi, menunjukkan bagaiman geometri yang dimodifikasikan ini diakibatkan oleh keberadaan massa.<ref>See {{Harvnb|Ehlers|1973|loc=pp. 10f.}}.</ref>
 
===Generalisasi relativistik===
Geometri gravitasi Newton pada dasarnya didasarkan pada mekanika klasik. Ia hanyalah kasus khusus dari mekanika [[relativitas khusus]].<ref>Good introductions are, in order of increasing presupposed knowledge of mathematics, {{Harvnb|Giulini|2005}}, {{Harvnb|Mermin|2005}}, and {{Harvnb|Rindler|1991}}; for accounts of precision experiments, cf. part IV of {{Harvnb|Ehlers|Lämmerzahl|2006}}</ref> Dalam bahasa [[simetri]]: ketika gravitasi dapat diabaikan, fisika yang berlaku bersifat [[invariansi Lorentz|invarian Lorentz]] pada relativitas khusus daripada [[invariansi Galileo|invarian Galileo]] pada mekanika klasik. Perbedaan antara keduanya menjadi signifikan apabila kecepatan terlibat di dalamnya mendekati [[kecepatan cahaya]] dan berenergi tinggi.<ref>An in-depth comparison between the two symmetry groups can be found in {{Harvnb|Giulini|2006a}}</ref>
 
[[File:Light cone.svg|thumb|left|[[Kerucut cahaya]]]]
Menggunakan simetri Lorentz, struktur-struktur tambahan mulai berperan penting. Struktur-struktur tambahan ini dijelaskan menggunakan sekumpulan kerucut cahaya. Kerucut cahaya mendefinisikan struktur sebab-akibat: untuk setiap peristiwa A, terdapat sekumpulan peristiwa yang menurut prinsipnya dapat mempengaruhi ataupun dipengaruhi oleh A melalui sinyal maupun interaksi yang tidak seperlunya merambat lebih cepat daripada cahaya (misalnya pada peristiwa B pada gambar) beserta sekumpulan peristiwa yang tidak memungkinkan memperngaruhi atau dipengaruhi oleh A (seperti pada peristiwa C pada gambar). Sekumplan peristiwa ini tak bergantung pada pengamat.<ref>{{Harvnb|Rindler|1991|loc=sec. 22}}, {{Harvnb|Synge|1972|loc=ch. 1 and 2}}</ref> Bersamaan dengan garis dunia partikel jatuh bebas, kerucut cahaya dapat digunakan untuk merekonstruksi metrik semi-Riemann ruang waktu.
 
Relativitas khusus dideskripsikan tanpa keberadaan gravitasi, sehingganya ia hanya cocok dijadikan sebagai model fisika di mana gravitasi dapat di abaikan. Ketika gravitasi terlibat di dalamnya, dengan berasumsi pada universalitas jatuh bebas, maka tiada [[kerangka inersia]] global apapun. Yang ada adalah kerangka inersia hampiran yang bergerak sepanjang partikel yang jatuh bebas. Menggunakan bahasa ruang waktu: garis lurus bak-waktu yang menentukan kerangka inersial tanpa gravitasi dideformasi menjadi garis yang melengkung relatif terhadap satu sama lainnya, mensugestikan bahwa pemasukan gravitasi memerlukan perubahan pada geometri ruang waktu.<ref>{{Harvnb|Ehlers|1973|loc=sec. 1.4}}, {{Harvnb|Schutz|1985|loc=sec. 5.1}}</ref>
 
== Referensi ==