Masalah Monty Hall: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Luckas-bot (bicara | kontrib)
Kenrick95Bot (bicara | kontrib)
k Bot: Penggantian teks otomatis (-mempengaruhi +memengaruhi)
Baris 74:
Kebanyakan pernyataan masalah ini, terutama yang terdapat pada ''Majalah Parade'' tidak mengikuti peraturan acara kuis TV yang sebenarnya, dan tidak menjelaskan tingkah laku pembawa acara dan lokasi mobil yang acak secara jelas ([[#refGranbergandBrown1995|Granberg and Brown, 1995:712]]). Krauss dan Wang ([[#refKraussandWang2003|2003:10]]) memberikan konjektur bahwa orang akan membuat asumsi standar bahkan jika tidak diberitahukan secara eksplisit. Walaupun ketidakjelasan pernyataan ini merupakan masalah yang sangat signifikan dalam matematika, bahkan ketika kita mengatasi faktor-faktor ketidakjelasan ini hampir semua orang masih tetap berpikir bahwa masing-masing pintu yang tidak terbuka akan memiliki probabilitas yang sama dan berkesimpulan bahwa mengalihkan pilihan tidak ada bedanya. ([[#refMueserandGranberg1999|Mueser and Granberg, 1999]]). Asumsi "probabilitas sama" ini berakar kuat pada intuisi seseorang ([[#refFalk1992|Falk 1992:202]]). Kebanyakan orang memiliki kecenderungan yang kuat untuk berpikir bahwa probabilitas akan terdistribusi secara seimbang di setiap anu (unknown) yang tersedia, baik itu benar maupun tidak. ([[#refFoxandLevav2004|Fox and Levav, 2004:637]]).
 
Intuisi lainnya yang juga bertanggung jawab atas kerancuan ini adalah keyakinan bahwa pemberitahukan informasi yang telah kita ketahui tidak akan mempengaruhimemengaruhi probabilitas ([[#refFalk1992|Falk 1992:207]]). Intuisi ini adalah dasar penyelesaian dari masalah yang menegaskan bahwa pembawa acara yang membuka sebuah pintu tidak akan mengubah probabilitas pemain sebesar 1/3 untuk memilih mobil. Untuk masalah yang eksplisit, intuisi ini akan mengantarkan kita pada jawaban yang benar, yaitu 2/3 peluang menang jika mengalihkan pilihan, namun intuisi ini juga mengantarkan kita pada jawaban yang sama ketika diberikan variasi masalah yang berbeda, dan jawaban intuisi tersebut tidaklah benar ([[#refFalk1992|Falk 1992:207]]).
 
Sumber kerancuan lainnya terdapat pada susunan kata-kata dari penyataan masalah yang menanyakan [[probabilitas bersyarat]] kemenangan dengan memberitahukan pintu mana yang pembawa acara buka ketimbang probabilitas keseluruhan atau probabilitas takbersyarat. Kedua hal ini adalah pertanyaan yang berbeda secara matematika dan memiliki jawaban yang berbeda bergantung pada bagaimana pembawa acara memilih pintu yang dia buka apabila pilihan awal pemain adalah mobil ([[#refMorganetal1991|Morgan dkk., 1991]]; [[#refGillman1992|Gillman 1992]]). Sebagai contoh, jika pembawa acara sebisa mungkin berusaha membuka Pintu 3, maka probabilitas kemenangan pemain yang pada awalnya memilih Pintu 1 dan kemudian mengalihkan pilihan adalah 2/3, namun probabilitas ini akan menjadi 1/2 apabila pembawa acara telah membuka Pintu 3. Oleh karena itu, bentuk kalimat pernyataan yang tidak menjelaskan secara detail tingkah laku pembawa acara menjadikan jawaban probabilitas 2/3 tidak dibenarkan secara matematika. Kebanyakan penyelesaian yang diberikan mengalamatkan probabilitas takbersyarat dan menghiraukan pintu mana yang pembawa acara buka; Morgan dkk. menjulukinya sebagai "penyelesaian salah" (false solutions) ([[#refMorganetal1991|1991]]).
Baris 81:
 
=== Mengapa probabilitasnya bukanlah 1/2 ===
Kebanyakan orang akan mengira kejadian yang lampau (pembawa acara membuka pintu yang di belakangnya terdapat kambing) dapat diabaikan ketika kita memperkirakan probabilitas masalah ini dan tidak ada hubungan antara pilihan pemain dengan pintu yang pembawa acara buka. Namun sebenarnya pilihan pemain akan mempengaruhimemengaruhi pilihan pembawa acara.
 
Hal ini dapat kita mengerti apabila kita bandingkan dengan variasi masalah yang diajukan vos Savant pada bulan November 2006. Dalam versi yang berbeda ini, Monty Hall lupa pintu mana yang di belakangnya terdapat mobil. Dia kemudian membuka pintu secara acak dan lega setelah mengetahui pintu yang dia buka ternyata terdapat kambing. Apabila ditanyai apakah kontestan ingin mengalihkan pilihan, vos Savant menjawab, "Jika pembawa acara saja tidak tahu, maka tidak ada bedanya antara tetap pada pilihan maupun mengalihkan pilihan. Jika dia tahu, maka alihkanlah pilihan." ([[#refvosSavant2006|vos Savant, 2006]]).