Analisis struktur: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
k menambahkan Kategori:Teknik Sipil menggunakan HotCat
Sarwo90 (bicara | kontrib)
Tidak ada ringkasan suntingan
Baris 1:
{{Two other uses|studi struktural di bidang teknik|penggunaan ilmu sosial|strukturalisme}}
'''Analisis strukturalstruktur''' merupakan ilmu untuk menentukan efek dari beban pada struktur fisik dan komponennya. Adapun cabang pemakaiannya meliputi analisis bangunan, [[jembatan]], [[perkakas]], [[mesin]], tanah, dll. Analisis struktur menggabungkan bidang [[mekanika terapanteknik]], [[teknik material]] dan [[matematika terapanteknik]] untuk menghitung [[deformasi]] struktur, [[gaya (fisika)|kekuatan]] internal, [[tekanan]], reaksi tumpuan, percepatan, dan [[stabilitas]]. Hasil analisis tersebut digunakan untuk memverifikasi kekuatan struktur yang akan maupun telah dibangun. Dengan demikian analisis strukturalstruktur merupakan bagian penting dari [[teknik struktural|desain rekayasa struktur]].
 
==Sejarah==
Baris 8:
Di abad modern, perkembangan besar ilmu bahan dilakukan oleh ilmuwan [[Rusia]]-[[AS]] Stephen P. Timoshenko. Maha karyanya ''Strenght of Material'' merupakan buku wajib mahasiswa [[teknik sipil]] hampir diseluruh [[dunia]]. Penemuan penting lain adalah metode distribusi momen oleh Hardy Cross pada tahun [[1930]] dalam tulisannya di jurnal ASCE. Kontribusi lain Cross adalah metode analogi kolom. Namun metode klasik yang mulai digantikan seiring dengan berkembangnya kemampuan dan kecepatan komputer. Maka dari itu penggunaan [[metode elemen hingga]] semakin meluas oleh insinyur struktur. Analisis yang sebelumnya memakan banyak kertas dengan ketelitian semakin berkurang dengan banyaknya variabel berhasil diatasi. Metode ini pertama kali dipakai dalam menganalisis gedung [[Sydney_Opera_House|Opera Sydney]] oleh firma konsultan kenamaan Ove Arup. Bisa dikatakan metode elemen hingga merupakan penemuan terpenting dalam bidang analisis struktur.
 
==StrukturElemen dan bebanstruktur==
Sebuah sistem struktur merupakan gabungan antara elemen struktur dengan bahannya. Sangat penting bagi insinyur untuk mengklasifikasi struktur baik bentuk maupun fungsi dengan mengenali berbagai elemen yang menyusun struktur tersebut. Elemen struktur takdiantaranya semata [[balok]], [[kolom]] dan tiang penopang tetapi juga kabel, busur, terowongan, struktur permukaan, maupun [[portal]].:
===Klasifikasi struktur===
Sebuah sistem struktur merupakan gabungan antara elemen struktur dengan bahannya. Sangat penting bagi insinyur untuk mengklasifikasi struktur baik bentuk maupun fungsi dengan mengenali berbagai elemen yang menyusun struktur tersebut. Elemen struktur tak semata [[balok]], [[kolom]] dan tiang penopang tetapi juga kabel, busur, terowongan, struktur permukaan, maupun [[portal]].
 
==== Elemen lentur: Balok sederhana ====
[[File:Beam bending.png|thumb|Lentur balok]]
Sebuah balok langsing yang diberi perletakan sederhana makanakan lenturmenghasilkan lenturan. Sebutan masalahamasalah lentur diartikan pada studi mengenai tegangan dan deformasi yang timbul pada elemen yang mengalami aksi gaya. Umumnya tegaklurustegak lurus pada sumbu elemen sehingga salah satu tepi serat mengalamaimengalami perpanjangan dan tepi serat lainnya mengalami perpendekanpenyusutan.
Persamaan klasik untuk menentukan tegangan lentur pada balok dengan perletakan sederhana adalah :<ref>Gere, J. M. and Timoshenko, S.P., 1997, '''Mechanics of Materials''', PWS Publishing Company.</ref>
:<math>{\sigma}= \frac{M y}{I_x}</math>
Baris 28 ⟶ 27:
==== Pelat ====
Plat adalah struktur palanar kaku yang secara khas terbuat dari material monolit yang tingginya yang kecil dibandingkan dengan dimensi lainnya. Umumnya dapat dikatakan bahwa pelat yang terbuat dari material homogen mempunyai sifat yang sama pada segala arah.
 
==== Membran ====
Membran adalah suatu struktur permukaan fleksibel tipis memikul beban terutama melalui proses tegangan tarik. Struktur membran cenderung dapat menyesuaikan diri dengan cara struktur dibebani. Selain itu struktur ini sangat peka terhadap efek aerodinamika dari angin. Efek ini dapat menyebabkan fluttering (getaran). Penstabilan bisa dilakukan dengan memberi gaya pra-tegang.
 
==== Cangkang ====
Cangkang adalah bentuk struktural berdimensi tiga yang kaku dan tipis serta mempunyai permukaan yang lengkung. Beban-beban yang bekerja pada permukaan cangkang diteruskan ke tanah dengan menimbulkan tegangan geser, tarik, dan tekan pada arah dalam bidang (in-plane) permukaan tersebut.
 
=== BebanTipe struktur ===
Kombinasi elemen struktur dan material yang menyusunnya disebut sebagai suatu sistem struktur. Setiap sistem dibangun dari satu atau lebih dari keempat tipe dasar struktur.<ref>Hibbeller, R.C, 1999, '''Analisa Struktur''', PT. Prenhallindo.</ref>
[[File:Jembatan Truss Dutch Leupung.JPG|thumb|Jembatan tipe Warren Truss di Leupung, Aceh. Disini beban mati adalah berat rangka baja dan perkerasan jalan. Sedang beban hidupnya adalah beban kendaraan, angin, dan gempa.]]
 
Setelah dimensi dari struktur itu diketahui, sangat penting kemudian menentukan beban apa saja yang ditanggung dari struktur. Beban disain biasanya dispesifikasi oleh peraturan bangunan yang berlaku. Untuk wilayah hukum Indonesia digunakan [[SNI]] 1727 1989 Perencanaan Pembebanan Untuk Rumah dan Gedung.
=== Truss ===
Truss terdiri dari ikatan elemen balok tegangan tarik dan elemen kolom pendek dan biasanya berbentuk segitiga. Truss bidang disusun dari elemen-elemen yang berada pada bidang yang sama (2 matra) dan seringkali digunakan untuk jembatan-jembatan, penopang atap. Sebaliknya, truss ruang memiliki elemen-elemen yang dapat mengembang ke dalam tiga matra dan cocok untuk derek dan menara. Kemampuan bentangnya mulai dari 10 [[meter|m]] hingga 125 m. Untuk kasus jembatan di Indonesia, kemampuan bentang truss tipe Warren bisa mencapai 60 m dibandingkan dengan jembatan balok prategang sederhana yang hanya mampu membentang sepanjang 30 m.
 
=== Kabel dan lengkungan ===
Dua bentuk lain dari struktur yang digunakan untuk bentang panjang adalah kabel dan bangunan berpola lengkungan. Kabel biasanya fleksibel dan menyangga beban-bebannya dalam tegangan tarik. Tidak seperti tegangan tarik yang mengikat, beban luar (eksternal) tidak dipakai sepanjang sumbu kabel, dan akibatnya kabel mengalami bentuk kelengkungan tertentu.
 
Kabel umumnya digunakan untuk tujuan seperti menopang gelagar jembatan dan atap bangunan. Bila digunakan untuk tujuan ini, kabel memiliki suatu keuntungan dibandingkan balok dan truss khususnya untuk bentang melebihi 50 meter. Karena mereka berlaku sebagai tegangan tarik, kabel-kabel tidak akan menjadi stabil dan runtuh secara mendadak seperti yang biasa terjadi pada balok atau truss. Dalam aspek biaya, truss akan membutuhkan biaya tambahan dalam konstruksinya dan terjadi peningkatan ketinggian akibat bentang yang meningkat. Penggunaan kabel-kabel pada sisi lain dibatasi hanya oleh berat dan metode-metode penggantungan.
 
Lengkungan atau busur (Arch)mencapai kekuatannya dalam tegangan mampat, karena ia memiliki suatu bentuk kurva yang berlawanan dibandingkan dengan kabel. Lengkungan meskipun harus dimampatkan agar dapat menjaga bentuknya dan akibatnya pembebanan sekunder seperti gaya geser dan momen, harus dipertimbangkan dalam desainnya. Lengkungan seringkali digunakan dalam struktur jembatan, kubah, dan untuk pintu masuk dinding bangunan batu.
 
=== Kerangka ===
 
Kerangka-kerangka sering digunakan dalam bangunan yang tersusun dari balok dan kolom yang hubungan berupa sambungan pin (sendi) ataupun sambungan kaku.
 
== Beban ==
[[File:Jembatan Truss Dutch Leupung.JPG|thumb|Jembatan tipe Warren Truss di Leupung, [[Aceh]]. Disini beban mati adalah berat rangka baja dan perkerasan jalan. Sedang beban hidupnya adalah beban kendaraan, angin, dan gempa.]]
Setelah dimensi dari struktur itu diketahui, sangat penting kemudian menentukan beban apa saja yang ditanggung dari struktur. Beban disain biasanya dispesifikasi oleh peraturan bangunan yang berlaku. Untuk wilayah hukum Indonesia digunakan [[SNI]] 03 1727 1989 Perencanaan Pembebanan Untuk Rumah dan Gedung.
Ada dua jenis beban pada struktur yang harus dipertimbangkan dalam desain. Tipe pertama ini disebut dengan '''Beban mati''' yang merupakan berat dari kumpulan setiap anggota struktur maupun berat objek benda yang ditempatkan secara permanen. Sebagai contoh, kolom, balok, balok penopang (girder), pelat lantai, dinding, jendela, ''plumbing'', alat listrik, dan lain sebagainya.
Kedua adalah '''Beban hidup''', yang mana beban yang bergerak atau bervariasi dalam ukuran maupun lokasi. Contohnya adalah beban kendaraan pada jembatan, beban pengunjung pada gedung, beban hujan, beban salju, beban ledakan, beban gempa, dan beban alami lainnya.
 
===Stabilitas struktur===
Pada struktur stabil, deformasi yang diakibatkan beban pada umumnya kecil dan gaya dakhil (internal) yang timbul dalam struktur mempunyai kecenderugan mengembalikan bentuk semula apabila bebannya dihilangkan. Pada struktur tidak stabil, deformasi yang diakibatkan oleh beban pada umumnya mempunyai kecenderungan untuk terus bertambah selama struktur dibebani. Struktur yang tidak stabil mudah mengalami keruntuhan secara menyeluruh dan seketika begitu dibebani.
Sebagai contoh, bayangkan tiga buah balok disusun membentuk rangka segiempat. Berikan gaya horizontal diujung rangka atas balok tersebut. Maka lama kelamaan rangka itu rubuh. Salah satu cara untuk membuatnya lebih stabil dengan ''bracing'' atau mengisinya dengan dinding. Selain dengan yang disebutkan tadi, ketidakstabilitas struktur bisa diakibatkan juga oleh kelemahan kolom yang diakibatkan tekuk maupun efek ''P-Delta''.