Analisis matematis: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Willybold (bicara | kontrib)
Tidak ada ringkasan suntingan
k clean up, replaced: analisa → analisis (7), Analisa → Analisis (5) using AWB
Baris 1:
'''Analisis matematis''' merupakan cabang ilmu [[matematika]] yang mencakup teori [[turunan]], [[integral]], [[ukuran (matematika)|ukuran]], [[limit]], [[deret (matematika)|deret]],<ref>Edwin Hewitt and Karl Stromberg, "Real and Abstract Analysis", Springer-Verlag, 1965</ref> dan [[fungsi analisaanalisis]]. Teori ini biasanya dipelajari dalam konteks [[bilangan riil]] dan [[bilangan kompleks]] dan [[fungsi (matematika)|fungsi]]. AnalisaAnalisis ini dikembangkan dari [[kalkulus]], yang mencakup konsep dasar dan tehnik analisaanalisis. AnalisaAnalisis ini dapat dibedakan dari [[geometri]]. Namun demikian, analisaanalisis ini dapat diterapkan di seluruh [[ruang (matematika)|ruang]] objek matematika yang memiliki definisi kedekatan ([[ruang topologi]]) atau jarak tertentu di antara objek ([[ruang metrik]]).
 
== Sejarah ==
 
Analisis matematis sudah ada sejak awal jaman matematika Yunani kuno. Sebagai contoh, suatu jumlah geometris yang terbatas tersirat dalam [[Paradoks Zeno|paradoks]] [[Zeno dari Elea|Zeno]].<ref name="Stillwell Infinite Series Early Results">{{cite book|last=Stillwell|authorlink=John Stillwell|title=|year=2004|chapter=Infinite Series|pages=170|quote=Infinite series were present in Greek mathematics, [...] There is no question that Zeno's paradox of the dichotomy (Section 4.1), for example, concerns the decomposition of the number 1 into the infinite series <sup>1</sup>⁄<sub>2</sub> + <sup>1</sup>⁄<sub>2</sub><sup>2</sup> + <sup>1</sup>⁄<sub>2</sub><sup>3</sup> + <sup>1</sup>⁄<sub>2</sub><sup>4</sup> + ... and that Archimedes found the area of the parabolic segment (Section 4.4) essentially by summing the infinite series 1 + <sup>1</sup>⁄<sub>4</sub> + <sup>1</sup>⁄<sub>4</sub><sup>2</sup> + <sup>1</sup>⁄<sub>4</sub><sup>3</sup> + ... = <sup>4</sup>⁄<sub>3</sub>. Both these examples are special cases of the result we express as summation of a geometric series}}</ref> Menyusul [[Matematika Yunani|matematikawan Yunani]] seperti [[Eudoksos dari Knidos|Eudoxus]] and [[Archimedes]] menjadikannya lebih eksplisit, namun tidak formal, menggunakan konsep [[limit]] dan konvergensi saat mereka menggunakan metode untuk menghitung luas dan volume region dan padatan.<ref>(Smith, 1958)</ref> Di [[India]], [[matematikawan]] abad ke-12 [[Bhāskara II]] memberi contoh tentang [[turunan]] dan menggunakan seperti yang sekarang dikenal dengan nama [[Teorema Rolle]].
 
Pada abad ke-14, [[Madhava dari Sangamagrama]] mengembangkan [[deret (matematika)|deret tak hingga]], seperti [[deret pangkat]] dan [[Deret Taylor|deret taylor]] sebagai fungsi seperti [[sinus]], [[kosinus]], [[tangen]] dan [[kotangen]]. Disamping pengembangan deret taylor dari [[fungsi trigonometrik]], ia juga mengestimasikan besarnya [[galat]] yang dihasilkan dengan memotong deret dan memberikan perkiraan yang rasional pada sebuah deret tak tak hingga. Pengikutnya di [[mazhab astronomi dan matematika Kerala]] melanjutkan karnyanya hingga abad ke-16.
Baris 9:
Di [[Eropa]], pada akhir abad ke-17, [[Isaac Newton|Newton]] dan [[Gottfried Leibniz|Leibniz]] secara independen mengembangkan [[kalkulus|kalkulus infinitesimal]], yang berkembang, dengan stimulus kerja terapan yang terus berlanjut sampai abad ke-18, menjadi topik analisis seperti [[kalkulus|kalkulus variasi]], [[persamaan diferensial biasa]] dan [[persamaan diferensial parsial]], [[analisis fourier]] dan [[fungsi generator]]. Dalam periode ini, teknik kalkulus digunakan untuk memperkirakan [[matematika diskret|masalah diskret]] melalui pendekatan [[Analisis numeris|numerik]].
 
Pada abad ke-18, [[Leonhard Euler|Euler]] memperkenalkan konsep [[fungsi (matematika)|fungsi matematika]].<ref name="function">{{cite book| last = Dunham| first = William| title = Euler: The Master of Us All| year = 1999| publisher =The Mathematical Association of America | pages = 17}}</ref> Analisis yang sesungguhnya mulai muncul sebagai subjek independen saat [[Bernard Bolzano]] memperkenalkan definisi [[fungsi kontinu|kontinuitas]] pada tahun 1816,<ref>*{{cite book|first=Roger |last=Cooke |authorlink=Roger Cooke |title=The History of Mathematics: A Brief Course |publisher=Wiley-Interscience |year=1997 |isbn=0-471-18082-3 |pages=379 |chapter=Beyond the Calculus |quote=Real analysis began its growth as an independent subject with the introduction of the modern definition of continuity in 1816 by the Czech mathematician Bernard Bolzano (1781–1848)}}</ref> tetapi hasil kerjanya tidak dikenal luas sampai tahun 1870. Pada 1821, [[Augustin Louis Cauchy|Cauchy]] mulai menempatkan kalkulus pada landasan yang kuat dengan menolak prinsip [[aljabar|aljabar umum]] yang secara luas digunakan dalam karya sebelumnya, terutama oleh Euler. Sebaliknya, Cauchy merumuskan kalkulus dalam bentuk ide geometris dan [[infinitesimal]]. Dengan demikian, apa yang ia definisikan sebagai kontinuitas memerlukan suatu perubahan kecil dalam "x" sesuai dengan perubahan kecil dalam "y". Ia juga memperkenalkan konsep [[Urutan Cauchy|urutan cauchy]], dan memulai teori formal [[analisaanalisis kompleks]]. [[Siméon Denis Poisson|Poisson]], [[Joseph Liouville|Liouville]], [[Jean Baptiste Joseph Fourier|Fourier]] dan lainnya mempelajari persamaan diferensial parsial dan [[Analisis Fourier|analisaanalisis harmonik]]. Kontribusi para matematikawan ini termasuk juga [[Karl Weierstrass|Weierstrass]], mengembangkan pendekatan [[definisi limit (ε, δ)]] membuka babak baru bidang analisis matematis modern.
 
Pada pertengahan abad, [[Georg Friedrich Bernhard Riemann|Riemann]] memperkenalkan teorinya mengenai [[integral]]. Pada akhir abad ke-19 melihat analisaanalisis [[aritmetika]] oleh [[Karl Weierstrass|Weierstrass]], yang berikir bahwa ada kekeliruan pemahaman mengenai penalaran geometris, dan ia memperkenalkan [[definisi limit (ε, δ)]] dari [[limit fungsi|limit]]. Hal ini mengakibatkan matematikawan khawatir bahwa mereka mengasumsikan adanya [[kontinum]] [[bilangan riil]] tanpa bukti. [[Richard Dedekind|Dedekind]] kemudian menyusun bilangan riil dengan [[potongan dedekind]], dimana [[bilangan irasional]] didefinisikan secara formal, yang berfungsi untuk mengisi "celah" di antara [[bilangan rasional]], sehingga menciptakan satu set kontinum bilangan riil yang telah dikembangkan oleh [[Simon Stevin]].
 
== Cabang ==
Baris 22:
* [[ukuran (matematika)|Teori pengukuran]]
* [[Kalkulus vektor]]
* [[AnalisaAnalisis fungsional]]
* [[Kalkulus variasi]]
* [[Analisis Fourier|Analisis fourier]]
Baris 38:
 
=== Analisis klasik ===
Analisis klasik biasanya dipahami sebagai suatu analisaanalisis yang tidak menggunakan teknik analisis fungsional, serta menggunakan metode yang lebih tradisional. Studi tentang [[persamaan diferensial]] sekarang berbagi dengan bidang lain seperti [[teori sistem dinamis]], meskipun overlapping dengan analisis konvensional masih cukup besar.
 
=== Aplikasi teknik analisis ===
Baris 44:
Teknik dari analisis ini juga ditemukan di berbagai area seperti:
 
* [[AnalisaAnalisis teori bilangan]]
* [[AnalisaAnalisis kombinasi]]
* [[Sebaran probabilitas|Probabilitas kontinu]]
* [[Entropi diferensial]] dalam teori informasi