Sistem koordinat polar: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
←Membuat halaman berisi 'Image:Examples of Polar Coordinates.svg|thumb|250px|Titik-titik dalam sistem koordinat polar dengan kutub/''pole'' ''O'' dan aksis polar ''L''. Warna hijau: titik de...'
 
Tidak ada ringkasan suntingan
Baris 3:
 
Titik yang telah ditetapkan (analog dengan titik origin dalam [[sistem koordinat Kartesius]]) disebut ''pole'' atau "kutub", dan [[:en:ray (geometry)|''ray'' atau "sinar"]] dari kutub pada arah yang telah ditetapkan disebut "aksis polar" (''polar axis''). Jarak dari suatu kutub disebut ''radial coordinate'' atau ''radius'', dan sudutnya disebut ''angular coordinate'', ''polar angle'', atau ''[[azimuth]]''.<ref name="brown">{{Cite book| last = Brown| first = Richard G.| editor = Andrew M. Gleason| year = 1997| title = Advanced Mathematics: Precalculus with Discrete Mathematics and Data Analysis| publisher = McDougal Littell| location = Evanston, Illinois| isbn = 0-395-77114-5}}</ref>
 
<!--
==HistorySejarah ==
<!--{{See also|History of trigonometric functions}}-->
[[Image:Hipparchos 1.jpeg|thumb|190px|Hipparchus]]
TheKonsep conceptssudut ofdan anglejari-jari andsudah radiusdigunakan wereoleh alreadymanusia usedsejak byzaman ancientpurba, peoplespaling oftidak thepada 1stmilenium millenniumpertama [[Before Christ|BCSM]]. TheAstronom [[Greekdan astronomy|Greek astronomer]] andastrolog [[astrologerYunani]], [[Hipparchus]], (190–120 BCSM) createdmenciptakan atabel table offungsi [[:en:chord (geometry)|chord]] functionsdengan givingmenyatakan the length of thepanjang chord forbagi eachsetiap anglesudut, and theredan areada referencesrujukan tomengenai hispenggunaan usingkoordinat polar coordinatesolehnya inuntuk establishingmenentukan stellarposisi positionsbintang-bintang.<ref name="milestones">{{Cite web| last = Friendly| first = Michael| title = Milestones in the History of Thematic Cartography, Statistical Graphics, and Data Visualization| url = http://www.math.yorku.ca/SCS/Gallery/milestone/sec4.html| accessdate = 2006-09-10}}</ref>
InDalam karyanya ''[[On Spirals]]'', [[Archimedes]] describes themenyatakan [[Archimedean spiral]], asuatu functionfungsi whoseyang radiusjari-jarinya dependstergantung ondari the anglesudut. TheNamun, Greekkarya-karya work, however,Yunani didtidak notberkembang extendsampai toke asuatu fullsistem coordinatekoordinat systemsepenuhnya.
 
FromDari theabad 8thke-8 centuryM ADdan onwardseterusnya, astronomerspara developedastronom methodsmengembangkan formetode approximatinguntuk andmenghitung calculatingarah the direction toke [[MakkahMekkah]] ([[qiblakiblat]])—and— dan itsjaraknya distance—from anydari locationsemua onlokasi thedi Earthbumi.<ref>{{Cite book
| title= The Sacred Geography of Islam
| first= David A.
Baris 30:
| url= http://books.google.com.au/books?id=AMOQZfrZq-EC&pg=PA161#v=onepage&f=false
| ref=harv}}
</ref> <!--From the 9th century onward they were using [[spherical trigonometry]] and [[map projection]] methods to determine these quantities accurately. The calculation is essentially the conversion of the [[Geodetic coordinates#Coordinates|equatorial polar coordinates]] of Mecca (i.e. its [[longitude]] and [[latitude]]) to its polar coordinates (i.e. its qibla and distance) relative to a system whose reference meridian is the great circle through the given location and the Earth's poles, and whose polar axis is the line through the location and its [[antipodal point]].<ref>King ([[#CITEREFKing2005|2005]], [http://books.google.com.au/books?id=AMOQZfrZq-EC&pg=PA169#v=onepage&f=false p. 169]). The calculations were as accurate as could be achieved under the limitations imposed by their assumption that the Earth was a perfect sphere.</ref>
 
There are various accounts of the introduction of polar coordinates as part of a formal coordinate system. The full history of the subject is described in [[Harvard University|Harvard]] professor [[Julian Lowell Coolidge]]'s ''Origin of Polar Coordinates.''<ref name="coolidge">{{Cite journal| last = Coolidge| first = Julian| authorlink = Julian Lowell Coolidge| title = The Origin of Polar Coordinates| journal = American Mathematical Monthly| volume = 59| pages = 78–85| year = 1952| url = http://www-history.mcs.st-and.ac.uk/Extras/Coolidge_Polars.html| doi = 10.2307/2307104| issue = 2| publisher = Mathematical Association of America| jstor = 2307104}}</ref> [[Grégoire de Saint-Vincent]] and [[Bonaventura Cavalieri]] independently introduced the concepts in the mid-seventeenth century. Saint-Vincent wrote about them privately in 1625 and published his work in 1647, while Cavalieri published his in 1635 with a corrected version appearing in 1653. Cavalieri first used polar coordinates to solve a problem relating to the area within an [[Archimedean spiral]]. [[Blaise Pascal]] subsequently used polar coordinates to calculate the length of [[parabola|parabolic arcs]].
Baris 37:
 
The actual term ''polar coordinates'' has been attributed to [[Gregorio Fontana]] and was used by 18th-century Italian writers. The term appeared in [[English language|English]] in [[George Peacock]]'s 1816 translation of [[Sylvestre François Lacroix|Lacroix]]'s ''Differential and Integral Calculus''.<ref>{{Cite web| last = Miller| first = Jeff| title = Earliest Known Uses of Some of the Words of Mathematics| url = http://members.aol.com/jeff570/p.html| accessdate = 2006-09-10}}</ref><ref>{{Cite book| last = Smith| first = David Eugene| title = History of Mathematics, Vol II| publisher = Ginn and Co.| year = 1925| location = Boston| pages = 324}}</ref> [[Alexis Clairaut]] was the first to think of polar coordinates in three dimensions, and [[Leonhard Euler]] was the first to actually develop them.<ref name="coolidge" />
-->
== Kaidah ==
[[Image:Polar graph paper.svg|thumb|right|300px|ASebuah grid polar griddengan beberapa withsudut severalyang anglesdiberi labeledlabel indalam degreesderajat.]]
TheKoordinat radial coordinatesering isdilambangkan often denoted bydengan ''r'', anddan thekoordinat angular coordinatedilambangkan bydengan [[phi|''φ'']], [[theta|''θ'']], oratau ''t''. TheKoordinat angular coordinateditetapkan is specified assebagai ''φ'' byoleh standar [[International Organisation for Standardisation|ISO]] standard [[ISO 31-11|31-11]].
 
AnglesSudut indalam notasi polar notation are generally expressedbiasanya indinyatakan eitherdalam [[:en:degree (angle)|degreederajat]]s oratau [[radian]]s (2[[pi|π]] rad beingsama equaldengan to 360°). DegreesDerajat arebiasanya traditionallydigunakan used indalam [[navigationnavigasi]], [[surveying]], anddan manybanyak applied disciplinesbidang, whilesementara radians are moreradian commonlebih inumum mathematicsdalam andmatematika mathematicaldan [[physicsfisika]].<ref>{{Cite book| last = Serway| first = Raymond A.| coauthors = Jewett, Jr., John W.| title = Principles of Physics| publisher = Brooks/Cole—Thomson Learning| year = 2005| isbn = 0-534-49143-X}}</ref>
==Conventions==
[[Image:Polar graph paper.svg|thumb|right|300px|A polar grid with several angles labeled in degrees]]
The radial coordinate is often denoted by ''r'', and the angular coordinate by [[phi|''φ'']], [[theta|''θ'']], or ''t''. The angular coordinate is specified as ''φ'' by [[International Organisation for Standardisation|ISO]] standard [[ISO 31-11|31-11]].
 
Dalam banyak konteks, suatu koordinat angular positif berarti sudut ''φ'' diukur [[berlawanan dengan jarum jam]] dari aksis.
Angles in polar notation are generally expressed in either [[degree (angle)|degree]]s or [[radian]]s (2[[pi|π]] rad being equal to 360°). Degrees are traditionally used in [[navigation]], [[surveying]], and many applied disciplines, while radians are more common in mathematics and mathematical [[physics]].<ref>{{Cite book| last = Serway| first = Raymond A.| coauthors = Jewett, Jr., John W.| title = Principles of Physics| publisher = Brooks/Cole—Thomson Learning| year = 2005| isbn = 0-534-49143-X}}</ref>
 
In many contexts, a positive angular coordinate means that the angle ''φ'' is measured [[clockwise|counterclockwise]] from the axis.
 
In mathematical literature, the polar axis is often drawn horizontal and pointing to the right.
 
Dalam literatur matematika, aksis polar sering digambar horizontal dan mengarah ke kanan.
<!--
===Uniqueness of polar coordinates===
Adding any number of full [[turn (geometry)|turn]]s (360°) to the angular coordinate does not change the corresponding direction. Also, a negative radial coordinate is best interpreted as the corresponding positive distance measured in the opposite direction. Therefore, the same point can be expressed with an infinite number of different polar coordinates {{nowrap|(''r'', ''φ'' ± ''n''×360°)}} or {{nowrap|(−''r'', ''φ'' ± (2''n'' + 1)180°)}}, where ''n'' is any [[integer]].<ref>{{Cite web| url = http://www.fortbendisd.com/campuses/documents/Teacher/2006%5Cteacher_20060413_0948.pdf| title = Polar Coordinates and Graphing| accessdate = 2006-09-22| date = 2006-04-13| format = PDF}}</ref> Moreover, the pole itself can be expressed as (0,&nbsp;''φ'') for any angle ''φ''.<ref>{{Cite book|title=Precalculus: With Unit-Circle Trigonometry|last=Lee|first=Theodore|author2=David Cohen |author3=David Sklar |year=2005|publisher=Thomson Brooks/Cole|edition=Fourth|isbn=0-534-40230-5}}</ref>