Sistem koordinat polar: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan
Tidak ada ringkasan suntingan
Baris 65:
:<math>r = \sqrt{x^2 + y^2} \quad</math> (sebagaimana dalam [[teorema Pythagoras]] atau [[Euclidean norm]]), dan
:<math>\varphi = \operatorname{atan2}(y, x) \quad</math>,
di mana [[atan2]] merupakan isvariasi aumum commonpada variation on thefungsi [[arctangent]] functionyang didefinisikan definedsebagai as
:<math>\operatorname{atan2}(y, x) =
\begin{cases}
Baris 76:
\end{cases}</math>
 
The value ofNilai ''φ'' abovedi isatas theadalah [[principal value]] ofdari thefungsi complex[[bilangan number functionkompleks]] [[Argument:en:argument (complex analysis)|arg]] appliedyang toditerapkan pada ''x''+''iy''. AnSuatu anglesudut indalam the rangerentang [0, 2π) maydapat bediperoleh obtaineddengan by addingmenambahkantopada the valuenilai insudut caseitu itjika isnilainya negativenegatif.
<!--
 
==Polar equation of a curve==
The equation defining an [[algebraic curve]] expressed in polar coordinates is known as a ''polar equation''. In many cases, such an equation can simply be specified by defining ''r'' as a [[function (mathematics)|function]] of ''φ''. The resulting curve then consists of points of the form (''r''(''φ''),&nbsp;''φ'') and can be regarded as the [[graph of a function|graph]] of the polar function ''r''.