Uji kekonvergenan: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
←Membuat halaman berisi '{{Calculus |Series}} '''Tes konvergensi''' ('''Uji konvergensi'''; {{lang-en|convergence tests}}) dalam matematika adalah kumpulan metoda untuk melakukan tes berk...'
 
Perbaikan terjemahan
Baris 29:
===[[:en:Integral test for convergence|Tes integral]]===
 
Deret itu dapat dibandingkan dengan suatu integral untuk menguji apakah konvergen atau divergen. <!--Let
Misalnya <math>f:[1,\infty)\to\R_+</math> beadalah asuatu positivefungsi andpositif dan [[:en:monotonic function|''monotone decreasing function'']] suchsedemikian thatsehingga <math>f(n) = a_n</math>. If
:Jika <math>\int_{1}^{\infty} f(x)\, dx = \lim_{t \to \infty} \int_{1}^{t} f(x)\, dx < \infty,</math> maka deret itu konvergen
:Jika integral itu divergen, maka deret itu juga divergen.
:then the series converges. But if the integral diverges, then the series does so as well.
:InDengan otherkata wordslain, the seriesderet <math>{a_n}</math> convergeskonvergen [[ifjika anddan onlyhanya ifjika]] the integralintegralnya convergeskonvergen.
 
===[[Direct comparison test]]===
 
IfJika the seriesderet <math>\sum_{n=1}^\infty b_n</math> ismerupakan ansuatu deret [[:en:absolutely convergent|konvergen mutlak]] series anddan <math>|a_n|\le |b_n|</math> for sufficiently largeuntuk ''n''&nbsp;,yang thencukup thebesar, seriesmaka deret <math>\sum_{n=1}^\infty a_n</math> convergesmutlak konvergen (''absolutely convergent'').
 
===[[Limit comparison test]]===
 
IfJika <math>\left \{ a_n \right \}, \left \{ b_n \right \} > 0</math>, and thedan limit <math>\lim_{n \to \infty} \frac{a_n}{b_n}</math> existsada, is finite andfinit isdan notbukan zeronol, thenmaka <math>\sum_{n=1}^\infty a_n</math> convergeskonvergen [[ifjika anddan onlyhanya ifjika]] <math>\sum_{n=1}^\infty b_n</math> convergeskonvergen.
'''
<!--
 
===[[Cauchy condensation test]]===
 
Let <math>\left \{ a_n \right \}</math> be a positive non-increasing sequence. Then the sum <math>A = \sum_{n=1}^\infty a_n</math> converges [[if and only if]] the sum <math>A^* = \sum_{n=0}^\infty 2^n a_{2^n}</math> converges. Moreover, if they converge, then <math>A \leq A^* \leq 2A</math> holds.
 
===[[Abel'sTes testAbel]]===
 
Suppose the following statements are true:
Baris 61 ⟶ 62:
This is also known as the Leibniz criterion. If <math>\sum_{n=1}^\infty a_n</math> is a series whose terms alternative from positive to negative, and if the limit as n approaches infinity of <math> a_n </math> is zero and the absolute value of each term is less than the absolute value of the previous term, then <math>\sum_{n=1}^\infty a_n</math> is convergent.
 
===[[Dirichlet'sTest testDirichlet]]===
-->
===[[Tes Raabe-Duhamel's test]]===
 
LetMisalkan { ''a''<sub>n</sub> } > 0.
===[[Raabe-Duhamel's test]]===
 
Definisikan
Let { ''a''<sub>n</sub> } > 0.
 
Define
 
<math> b_n = n \left( \frac{ a_n }{ a_{ n + 1 } } - 1 \right ) </math>.
 
Jika <math> L = \lim_{ n \to \infty } b_n </math> ada, maka ada tiga kemungkinan:
If
 
<math> L = \lim_{ n \to \infty } b_n </math>
 
exists there are three possibilities:
 
* if ''L'' > 1 the series converges
* if ''L'' < 1 the series diverges
* and if ''L'' = 1 the test is inconclusive.
 
* Jika ''L'' > 1 deret itu konvergen
* Jika ''L'' < 1 deret itu divergen
* Jika ''L'' = 1 tes itu tidak konklusif.
<!--
An alternative formulation of this test is as follows. Let { ''a''<sub>n</sub> } be a series of real numbers. Then if ''b'' > 1 and K (a natural number) exist such that
 
Baris 87 ⟶ 84:
for all ''n'' > ''K'' then the series { ''a''<sub>n</sub> } is convergent.
 
===NotesCatatan ===
 
*For some specific types of series there are more specialized convergence tests, for instance for [[Fourier series]] there is the [[Dini test]]
Baris 100 ⟶ 97:
convergence follows from the root test but not from the ratio test.
 
== ExamplesContoh ==
Consider the series
 
Baris 117 ⟶ 114:
(**) is geometric series with ratio <math> 2^{(1-\alpha)} </math>. (**) is finitely convergent if its ratio is less than one (namely <math>\alpha > 1</math>). Thus, (*) is finitely convergent [[if and only if]] <math> \alpha > 1 </math>.
 
== ConvergenceKonvergensi ofhasil productsperkalian ==
While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let <math>\left \{ a_n \right \}_{n=1}^\infty</math> be a sequence of positive numbers. Then the infinite product <math>\prod_{n=1}^\infty (1 + a_n)</math> converges [[if and only if]] the series <math>\sum_{n=1}^\infty a_n</math> converges. Also similarly, if <math>0 < a_n < 1</math> holds, then <math>\prod_{n=1}^\infty (1 - a_n)</math> approaches a non-zero limit if and only if the series <math>\sum_{n=1}^\infty a_n</math> converges .
 
ThisIni candapat bedibuktikan proveddengan bymengambil takinglogaritma logarithmhasil ofkali thedan productmenggunakan andtes usingperbandingan limit comparison test.<ref>[http://cornellmath.wordpress.com/2008/01/26/convergence-of-infinite-products/ Convergence of Infinite Products]</ref>
-->
== Lihat pula ==