Spektroskopi inframerah

Revisi sejak 30 Desember 2008 07.19 oleh Kastono (bicara | kontrib)

Pendahuluan

Spektroskopi infra merah merupakan suatu metode yang mengamati interaksi molekul dengan radiasi elektromagnetik yang berada pada daerah panjang gelombang 0.75 – 1.000 µm atau pada bilangan gelombang 13.000 – 10 cm-1. Berdasarkan pembagian daerah panjang gelombang sinar infra merah dibagi atas tiga daerah yaitu:

  • a. Daerah infra merah dekat (13.000 - 4000 cm-1)
  • b. Daerah infra merah pertengahan (4000 - 200 cm-1)
  • c. Daerah infra merah jauh (200 - 10 cm-1)

Dari pembagian daerah spektrum elektromagnetik tersebut diatas, daerah panjang gelombang yang digunakan pada alat spektrofotometer infra merah adalah pada daerah infra merah pertengahan, yaitu pada panjang gelombang 2,5 – 50 µm atau pada bilangan gelombang 4.000 – 200 cm-1 . daerah tersebut adalah cocok untuk perubahan energi vibrasi dalam molekul. Daerah infra merah yang jauh (400 cm-1 sampai 10 cm-1) yang berguna untuk molekul mengandung atom berat seperti senyawa anorganik tetapi lebih memerlukan teknik khusus percobaan.

Spektroskopi infra merah ini dapat digunakan untuk mengidentifikasi suatu senyawa yang belum diketahui. Kekuatan prinsip dengan menggunakan metode ini adalah

  • a. Cepat dan relatif murah
  • b. Dapat digunakan untuk mengidentifikasi gugus fungsi dalam molekul (Tabel 2)
  • c. Spektrum infra merah yang dihasilkan oleh suatu senyawa adalah khas dan oleh karena itu dapat menyajikan sebuah fingerprint (sidik jari) untuk senyawa tersebut.

Penemuan infra merah ditemukan pertama kali oleh Sir William Herschel pada tahun 1800. Penelitian selanjutnya diteruskan oleh Young, Beer, Lambert dan Julius melakukan berbagai penelitian dengan menggunakan spektrofotometri inframerah. Pada tahun 1892 Julius menemukan dan membuktikan adanya hubungan antara struktur molekul dengan infra merah dengan ditemukannya gugus metil dalam suatu molekul akan memberikan serapan karakteristik yang tidak dipengaruhi oleh susunan molekulnya.

Metode spektroskopi adalah metode analisis yang didasarkan pada interaksi antara radiasi elektromagnetik dengan materi  interaksi yang terjadi adalah interaksi atomik ataupun interaksi molekuler. Metode spektrofotometri meliputi teknik serapan ( absorption ), teknik emisi ( emission ), teknik fluoresensi ( fluorescence ). Komponen medan listrik yang banyak berperan dalam spektrofotometri umumnya hanya komponen medan listrik yang banyak berperan seperti dalam fenomena transmisi,  pemantulan, pembiasan, dan penyerapan.

Spektroskopi IR mempunyai panjang gelombang 800nm-100nm. Dengan interaksi yang terjadi adalah interaksi Ikatan. Perbedaan spektoskopi IR dengan spektroskopi yang lain adalah dilihat dari jenis spektroskopi,panjang gelombang, dan interksi yang terjadi. Dibawah ini ditunjukkan perbedaan antara spektroskopi IR dengan yang lainnya

Jenis Panjang gelombang Interaksi
Gamma < 10 nm Emisi Inti
sinar-X < 10 nm Ionisasi Atomik
UV 10-380 nm Transisi Elektronik
Vis 380-800nm Transisi Elektronik
IR 800nm-100mm Interaksi Ikatan
Radio 1 meter Serapan Inti

Penyerapan gelombang elektromaknetik dapat menyebabkan terjadinya eksitasi tingkat-tingkat energi dalam molekul. Dapat berupa eksitasi elektronik, vibrasi, atau rotasi. E = h.n = h.C / l = h.C / n E = energi yang diserap h = tetapan Planck = 6,626 x 10-34 Joule.det  = frekuensi

      C = kecepatan cahaya = 2,998 x 108 m/det 

 = panjang gelombang n_ = bilangan gelombang JENIS VIBRASI MOLEKUL • VIBRASI ULUR (STRECHING VIBRATION) • VIBRASI TEKUK (BENDING VIBRATIONS) , dibagi menjadi 1. Scissoring 2. Rocking 3. Wagging 4. Twisting

Symmetrical
stretching
Antisymmetrical
stretching
Scissoring Rocking Wagging Twisting
           

Jumlah jenis vibrasi normal • diperlukan 3 koordinat untuk menentukan satu posisi dalam ruang • untuk N titik (atau N atom) dihasilkan 3N derajat kebebasan • pergerakan molekul melibatkan : translasi, rotasi, vibrasi Vibrasi untuk Molekul tak linier • perlu 3 derajat kebebasan untuk translasi • perlu 3 derajat kebebasan untuk rotasi • jadi tersisa (3N – 6) kemungkinan jenis vibrasi

Vibrasi untuk Molekul linier • perlu 3 derajat kebebasan untuk translasi • perlu 2 derajat kebebasan untuk rotasi (rotasi pada sumbu ikatan tak mungkin) • jadi tersisa (3N – 5) kemungkinan jenis vibrasi Contoh : Tentukan vibrasi untuk molekul CO2 Jawab karena CO2 termasuk molekul linier maka vibrasi molekul CO2 adalah 3 (3)- 5 = 4 vibrasi

 

Wavenumbers listed in cm-1. A diagram of IR spectroscopy apparatus. Drawn by me.

Templat ini akan dikategorikan dalam Berkas yang menjadi kandidat migrasi lisensi Wikipedia. university of sargodha,sargodha, pakistan

Templat:ShouldBeSVG

Penggunaan dan aplikasi

Spektroskopi infra merah biasanya digunakan untuk penelitian dan industri yang sederhana dengan teknik yang sederhana dan untuk mengontrol kualitas Alat instrumennya cukup kecil dan mudah dibawa keman-mana dan kapanpun dapat digunakan.Dengan meningkatnya teknologi komputer memberikan hasil lebih lebih baik.Spektroskopi inframerah mempunyai ketepatan yang tinggi pada aplikasi kimia organik dan anorganik.Spektroskopi inframerah juga unggul Infrared spectroscopy has also been successfully utilized in the field of semiconductor microelectronics[1]: for example, infrared spectroscopy can be applied to semiconductors like silicon, gallium arsenide, gallium nitride, zinc selenide, amorphous silicon, silicon nitride, etc.

Efek isotop

Isotop yang berbeda memberikan bilangan gelombang yang berbeda pada spektroskopi inframerah.Seperti contoh frekuensi regangan O-O memberikan nilai 832 dan 788 cm -1 for ν(16O-16O) and ν(18O-18O) By considering the O-O as a spring, the wavelength of absorbance, ν can be calculated:

 

dimana k nilai konstan untuk ikatan, dan μ massa tereduksi untuk sistem A-B

 

(  massa dari atom  ).

Massa reduksi untuk 16O-16O dan 18O-18O dapat diperkirakan antara 8 dan 9. Sehingga

 

Daerah Identifikasi

Vibrasi yang digunakan untuk identifikasi adalah vibrasi bengkokan, khususnya goyangan (rocking), yaitu yang berada di daerah bilangan gelombang 2000 – 400 cm-1. Karena di daerah antara 4000 – 2000 cm-1 merupakan daerah yang khusus yang berguna untuk identifkasi gugus fungsional. Daerah ini menunjukkan absorbsi yang disebabkan oleh vibrasi regangan. Sedangkan daerah antara 2000 – 400 cm-1 seringkali sangat rumit, karena vibrasi regangan maupun bengkokan mengakibatkan absorbsi pada daerah tersebut. Dalam daerah 2000 – 400 cm-1 tiap senyawa organik mempunyai absorbsi yang unik, sehingga daerah tersebut sering juga disebut sebagai daerah sidik jari (fingerprint region). Meskipun pada daerah 4000 – 2000 cm-1 menunjukkan absorbsi yang sama, pada daerah 2000 – 400 cm-1 juga harus menunjukkan pola yang sama sehingga dapat disimpulkan bahwa dua senyawa adalah sama.

Persiapan Sampel

Ada berbagai tehnik untuk persiapan sampel, bergantung pada bentuk fisik sampel yang akan dianalisis.

  • A. Padat

Jika zat yang akan dianalisis berbentuk padat, maka ada dua metode untuk persiapan sampel ini, yaitu melibatkan penggunaan Nujol mull atau pelet KBr.

    • 1. Nujol Mull

Cara persiapan sampel dengan menggunakan Nujol Mull yaitu: Sampel digerus dengan mortar dan pestle agar diperoleh bubuk yang halus. Dalam jumlah yang sedikit bubuk tersebut dicampur dengan Nujol agar terbentuk pasta, kemudian beberapa tetes pasta ini ditempatkan antara dua plat sodium klorida (plat ini tidak mengabsorbsi infra merah pada wilayah tersebut). Kemudian plat ditempatkan dalam tempat sampel pada alat spektrometer infra merah untuk dianalisis.

    • 2. Pelet KBr

Sedikit sampel padat (kira-kira 1 - 2 mg), kemudian ditambahkan bubuk KBr murni (kira-kira 200 mg) dan diaduk hingga rata. Campuran ini kemudian ditempatkan dalam cetakan dan ditekan dengan menggunakan alat tekanan mekanik. Tekanan ini dipertahankan beberapa menit, kemudian sampel (pelet KBr yang terbentuk) diambil dan kemudian ditempatkan dalam tempat sampel pada alat spektrometer infra merah untuk dianalisis.

  • B. Cairan

Bentuk ini adalah paling sederhana dan metode yang paling umum pada persiapan sampel. Setetes sampel ditempatkan antara dua plat KBr atau plat NaCl untuk membuat film tipis. Kemudian plat ditempatkan dalam tempat sampel alat spektrmeter infra merah untuk dianalisis.

  • C. Gas

Untuk menghasilkan sebuah spektrum infra merah pada gas, dibutuhkan sebuah sel silinder gas dengan jendela pada setiap akhir pada sebuah material yang tidak aktif infra merah seperti KBr, NaCl atau CaF2. Sel biasanya mempunyai inlet dan outlet dengan keran untuk mengaktifkan sel agar memudahkan pengisian dengan gas yang akan dianalisis.

See also

References

  1. ^ Lau, W.S. (1999). Infrared characterization for microelectronics. World Scientific. 

Templat:BranchesofSpectroscopy