Aturan sinus

Revisi sejak 21 Desember 2021 13.14 oleh Kekavigi (bicara | kontrib) (Mengatur posisi sub-subjudul dan mengganti subjudul "Bunyi Teorema" menjadi "Hubungan dengan lingkaran luar segitiga". Konten dalam edit ini adalah alih bahasa dari artikel Wikipedia Bahasa Inggris en:Law_of_sines (oldid 1059829524); Lihat sejarahnya untuk atribusi.)
Untuk kegunaan lain, lihat Sinus (disambiguasi).

Dalam trigonometri, aturan sinus, rumus sinus, atau hukum sinus adalah sebuah persamaan yang memperbandingan panjang sisi-sisi segitiga terhadap sinus sudut-sudutnya. Aturan ini menyatakan bahwadengan a, b, dan c menyatakan panjang-panjang sisi dari segitiga, dan α, β, dan γ adalah besar sudut-sudut yang menghadap sisi-sisi tersebut (lihat gambar sebagai ilustrasi), sedangkan R adalah radius dari lingkaran luar segitiga. Jika radius lingkaran tidak digunakan, aturan sinus terkadang dinyatakan dalam bentukAturan sinus berguna untuk menghitung sisi yang belum diketahui dari suatu segitiga apabila besar dua sudut dan panjang satu sisinya diketahui. Ini adalah masalah yang umum terjadi ketika melakukan triangulasi. Rumus ini juga dapat digunakan bila diketahui panjang dua sisi dan besar sudut yang tak diapit kedua sisi tersebut. Dalam kasus ini, data mungkin tidak dapat menghasilkan segitiga yang unik, sehingga rumus dapat memberikan dua nilai yang mungkin untuk sudut yang diapit. Aturan sinus juga dapat dipakai untuk menghitung jari-jari lingkaran luar segitiga.

Law of Sines
Tanpa lingkaran luar
Segitiga yang diberi label menyesuaikan dengan aturan sinus. Nilai sudut α, β dan γ masing-masing berasosiasi dengan titik sudut A, B, dan C. Huruf kecil a, b, dan c adalah panjang dari sisi yang menghadap sudut-sudut tersebut. (sisi a menghadap sudut α, dst.)

Aturan sinus adalah salah satu dari dua persamaan trigonometrik yang umum digunakan untuk menentukan besar panjang dan sudut pada segitiga, persamaan lain yang digunakan adalah aturan kosinus.

Aturan sinus dapat diperumum ke dimensi yang lebih tinggi, yakni pada permukaan dengan kurvatur yang bernilai konstan.[1]

Sejarah

Hukum sinus bagi segitiga yang terletak pada bola ditemukan pada abad ke-10. Penemuan ini banyak diatribusikan kepada Abu-Mahmud Khojandi, Abul Wafa Muhammad Al Buzjani, Nashiruddin ath-Thusi, dan Abu Nashr Mansur.[2]

Pada abad ke-11, buku Ibn Muʿādh al-Jayyānī' mengandung hukum sinus secara umum.[3][4] Hukum sinus pada bidang [datar] kemudian dinyatakan oleh Nashiruddin ath-Thusi pada abad ke-13.[4] Dalam karyanya Tentang Gambar Sektor, ia menuliskan hukum sinus untuk bidang datar dan untuk permukaan bola, dan memberikan rumus untuk kedua hukum ini.[5]

Pada abad ke-15, matematikawan Jerman Regiomontanus menggunakan hukum sinus sebagai fondasi solusi tentang masalah yang berkaitan dengan segitiga siku-siku. Solusi yang tertulis pada Buku IV-nya pada gilirannya menjadi dasar solusi masalah yang berkaitan dengan segitiga secara umum.[6]

Bukti

Perhatikan segitiga dengan sisi a, b, dan c, dan sudut yang berhadapan A, B, dan C. Tarik garis tinggi h dari sudut C ke sisi c sehingga segitiga ABC terbagi menjadi dua segitiga siku-siku.

Dapat diamati bahwa:

  dan 

Dari persamaan tersebut, dapat diturunkan dua bentuk dari h

 

sehingga diperoleh

 

Memperlakukan garis tinggi dari sudut A dengan cara yang sama, kemudian akan diperoleh:

 

Masalah dengan solusi yang ambigu

Ketika menggunakan aturan sinus untuk menentukan panjang sisi suatu segitiga, kasus ambigu dapat terjadi ketika dua segitiga dapat dibuat dari data yang tersedia (dengan kata lain, akan menghasilkan dua solusi berbeda). Pada ilustrasi berikut, dua segitiga yang dimaksud adalah segitiga ABC dan ABC′.

 

Untuk sembarang segitiga, kondisi-kondisi berikut perlu dipenuhi agar masalah memiliki solusi yang ambigu:

  • Informasi yang tersedia tentang segitiga hanyalah sudut α dan panjang a dan c.
  • Sudut α lancip (yakni, besar sudut α < 90°).
  • Sisi a lebih pendek daripada sisi c (yakni, besar a < c).
  • Sisi a lebih panjang daripada ketinggian h ketika diukur dari titik B (artinya a > h), dengan nilai h = c sin α.

Jika semua kondisi tersebut terpenuhi, maka sudut β dan β′ menghasilkan dua segitiga yang valid tapi berbeda, mengartikan dua persamaan berikut benar: Dari persamaan di atas, dapat ditentukan besar sudut β dan panjang sisi b, atau besar sudut β′ dan panjang sisi b′, jika diperlukan.

Contoh

 
Contoh 1

Diberikan informasi: panjang sisi a = 20, sisi c = 24, dan sudut γ = 40°, sedangkan nilai sudut α ingin dicari. Menggunakan aturan sinus, disimpulkan bahwa  Sehingga dengan menggunakan invers dari fungsi sinus, arcsinus, didapatkan  Solusi lain dari arcsin adalah nilai α = 147.61°. Namun ini tidak digunakan karena akan menghasilkan solusi dengan total sudut segitiga α + β + γ > 180°.

Hubungan dengan lingkaran luar segitiga

 
Segitiga ABC dengan sisi a, b, c; sudut segitiga A, B, C; luas segitiga S; dan jari-jari lingkaran luar R.

Untuk sebarang segitiga ABC dengan sudut A, B dan C, dengan sisi-sisi yang berhadapan dengan sudut tersebut masing-masing a, b dan c (ditulis dengan huruf kecil), berlaku:

 

di mana R adalah jari-jari lingkaran luar segitiga ABC.

Dapat ditunjukkan bahwa

 

di mana   setengah keliling lingkaran

 

Lihat pula

Rujukan

  1. ^ "Generalized law of sines". mathworld. 
  2. ^ Sesiano hanya mencatat al-Wafa sebagai seorang kontributor. Sesiano, Jacques (2000) "Islamic mathematics" pp. 137–157, dalam Selin, Helaine; D'Ambrosio, Ubiratan (2000), Mathematics Across Cultures: The History of Non-western Mathematics, Springer, ISBN 1-4020-0260-2  "... .Spherical geometry was based on Menelaus's Spherics (and, in particular, its theorem IIIJ.1) and gave rise through Abu'l-Wafii' al-Buzjani (940-997/8) to the law of sines for spherical triangles,   where   are the sides and   the opposite angles
  3. ^ O'Connor, John J.; Robertson, Edmund F., "Abu Abd Allah Muhammad ibn Muadh Al-Jayyani", Arsip Sejarah Matematika MacTutor, Universitas St Andrews .
  4. ^ a b Histoire des sciences arabes. Rushdī Rāshid, Régis Morelon. Paris. 1997. ISBN 2-02-030355-8. OCLC 37996126. 
  5. ^ Berggren, J. Lennart (2007). "Mathematics in Medieval Islam". The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook. Princeton University Press. hlm. 518. ISBN 978-0-691-11485-9. 
  6. ^ Glen Van Brummelen (2009). "The mathematics of the heavens and the earth: the early history of trigonometry". Princeton University Press. p.259. ISBN 0-691-12973-8