Poligon

bangun datar yang terdiri dari garis lurus yang bergabung untuk membentuk rantai tertutup atau sirkuit

Poligon (secara literal "banyak sudut", silakan lihat Wiktionary untuk definisi lengkap) merupakan bentuk datar yang terdiri dari garis lurus yang bergabung untuk membentuk rantai tertutup atau sirkuit.

Berbagai macam poligon.
Beberapa macam poligon yang lain.

Nama dan jenis

Poligon adalah dinamakan sesuai dengan jumlah tepi, bergabung satu dengan awalan angka dalam bahasa Yunani dengan akhiran-gon. Contoh pentagon, dodekagon. Segitiga, sisi empat, dan nonagon adalah pengecualian-pengecualian. Untuk nomor-nomor lebih besar, ahli matematika menulis angka sendiri, contoh 17-gon. Satu variabel dapat juga digunakan, biasanya n-gon. Ini adalah jika jumlah berguna untuk tepi adalah digunakan dalam satu rumus.

Nama poligon
Nama Bilangan sisi
henagon (atau monogon) 1
digon 2
segi tiga (atau trigon) 3
segi empat (atau tetragon) 4
pentagon 5
heksagon (atau seksagon) 6
heptagon (elakkan "septagon" = Latin [sept-] + Greek) 7
oktagon 8
nonagon (atau enneagon) 9
dekagon 10
hendekagon (elakkan "undekagon" = Latin [un-] + Greek) 11
dodekagon (elakkan "duodekagon" = Latin [duo-] + Greek) 12
tridekagon atau triskaidekagon (MathWorld) 13
tetradekagon atau tetrakaidekagon interal angle approx 154.2857 degrees.(MathWorld) 14
pentadekagon (atau quindekagon) atau pentakaidekagon 15
heksadekagon atau heksakaidekagon 16
heptadekagon atau heptakaidekagon 17
oktadekagon atau oktakaidekagon 18
enneadekagon atau enneakaidekagon atau nonadekagon 19
ikosagon 20
triakontagon 30
tetrakontagon 40
pentakontagon 50
heksacontagon (MathWorld) 60
heptakontagon 70
oktakontagon 80
nonakontagon 90
hektagon (juga hektogon) (elakkan "sentagon" = Latin [cent-] + Greek) 100
chiliagon 1000
myriagon 10,000
decemyriagon 100,000
hecatommyriagon (atau hekatommyriagon) 1,000,000

Penamaan poligon

Poligon yang memiliki sisi lebih dari 20 sisi dan kurang dari 100 sisi dinamakan dengan menggunakan kombinasi kata nama berikut:

Angka Puluh dan Angka Sa Imbuhan Akhir
-kai- 1 -hena- -gon
20 icosa- 2 -di-
30 triaconta- 3 -tri-
40 tetraconta- 4 -tetra-
50 pentaconta- 5 -penta-
60 hexaconta- 6 -hexa-
70 heptaconta- 7 -hepta-
80 octaconta- 8 -octa-
90 enneaconta- 9 -ennea-

Contohnya, untuk poligon bersisi 42 akan dinamakan seperti berikut:

Angka puluh dan Angka sa Imbuhan akhir Nama penuh Poligon
tetraconta- -kai- -di- -gon tetracontakaidigon

dan untuk objek bersisi 50

Angka Puluh dan Angka Sa Imbuhan akhir Nama penuh Poligon
pentaconta-   -gon pentacontagon

Namun begitu, poligon yang melebihi nonagons dan decagons, pakar matematika lebih gemar menggunakan angka notasi tersebut (misalnya, MathWorld memiliki artikel tentang 17-gons dan 257-gons).

Sejarah

 
historical image of polygons (1699)

Poligon telah dikenal sejak zaman dahulu. Poligon reguler diketahui orang sejak zaman Yunani kuno, dan pentagram, poligon beraturan yang tidak cembung (poligon bintang), muncul pada vas bunga Aristophonus, Caere, tertanggal abad-ke 7 Sebelum Masehi.[butuh rujukan] Non-convex polygons in general were not systematically studied until the 14th century by Thomas Bradwardine.[1]

In 1952, Geoffrey Colin Shephard generalized the idea of polygons to the complex plane, where each real dimension is accompanied by an imaginary one, to create complex polygons.[2]

Referensi

  1. ^ Coxeter, H.S.M.; Regular Polytopes, 3rd Edn, Dover (pbk), 1973, p.114
  2. ^ Shephard, G.C.; "Regular complex polytopes", Proc. London Math. Soc. Series 3 Volume 2, 1952, pp 82-97