Trigonometri
Trigonometri (dari bahasa Yunani trigonon = tiga sudut dan metro = mengukur) adalah sebuah cabang matematika yang berhadapan dengan sudut segitiga dan fungsi trigonometrik seperti sinus, cosinus, dan tangen. Trigonometri memiliki hubungan dengan geometri, meskipun ada ketidaksetujuan tentang apa hubungannya; bagi beberapa orang, trigonometri adalah bagian dari geometri.
Sejarah awal
Awal trigonometri dapat dilacak hingga zaman Mesir Kuno dan Babilonia dan peradaban Lembah Indus, lebih dari 3000 tahun yang lalu. Matematikawan India adalah perintis penghitungan variabel aljabar yang digunakan untuk menghitung astronomi dan juga trigonometri. Lagadha adalah matematikawan yang dikenal sampai sekarang yang menggunakan geometri dan trigonometri untuk penghitungan astronomi dalam bukunya Vedanga, Jyotisha, yang sebagian besar hasil kerjanya hancur oleh penjajah India.
Matematikawan Yunani Hipparchus sekitar 150 SM menyusun tabel trigonometri untuk menyelesaikan segitiga.
Matematikawan Yunani lainnya, Ptolemy sekitar tahun 100 mengembangkan penghitungan trigonometri lebih lanjut.
Matematikawan Silesia Bartholemaeus Pitiskus menerbitkan sebuah karya yang berpengaruh tentang trigonometri pada 1595 dan memperkenalkan kata ini ke dalam bahasa Inggris dan Perancis.
Konsep
Dasar dari Trigonometri adalah Konsep kesebangunan segitiga siku-siku. Sisi-sisi yang bersesuaian pada dua bangun datar yang sebangun memiliki perbandingan yang sama. Pada geometri Euclid, jika masing-masing sudut pada dua segitiga memiliki besar yang sama, maka kedua segitiga itu pasti sebangun.[1] Hal ini adalah dasar untuk perbandingan trigonometri sudut lancip. Konsep ini lalu dikembangkan lagi untuk sudut-sudut non lancip (lebih dari 90 derajat dan kurang dari nol derajat).
Kegunaan
Ada banyak aplikasi trigonometri. Terutama adalah teknik triangulasi yang digunakan dalam astronomi untuk menghitung jarak ke bintang-bintang terdekat, dalam geografi untuk menghitung antara titik tertentu, dan dalam sistem navigasi satelit.
Bidang lainnya yang menggunakan trigonometri termasuk astronomi (dan termasuk navigasi, di laut, udara, dan angkasa), teori musik, akustik, optik, analisis pasar finansial, elektronik, teori probabilitas, statistika, biologi, pencitraan medis/medical imaging (CAT scan dan ultrasound), farmasi, kimia, teori angka (dan termasuk kriptologi), seismologi, meteorologi, oseanografi, berbagai cabang dalam ilmu fisika, survei darat dan geodesi, arsitektur, fonetika, ekonomi, teknik listrik, teknik mekanik, teknik sipil, grafik komputer, kartografi, kristalografi.
Ada pengembangan modern trigonometri yang melibatkan "penyebaran" dan "quadrance", bukan sudut dan panjang. Pendekatan baru ini disebut trigonometri rasional dan merupakan hasil kerja dari Dr. Norman Wildberger dari Universitas New South Wales. Informasi lebih lanjut bisa dilihat di situs webnya [1].
Hubungan fungsi trigonometri
Fungsi dasar:
Identitas trigonometri
Rumus jumlah dan selisih sudut
Rumus perkalian trigonometri
Rumus jumlah dan selisih trigonometri
Rumus sudut rangkap dua
Rumus sudut rangkap tiga
Rumus setengah sudut
Lihat pula
Referensi
- ^ Trigonometri zenius blog
Pustaka
- Boyer, Carl B. (1991). A History of Mathematics (edisi ke-Second Edition). John Wiley & Sons, Inc. ISBN 0-471-54397-7.
- Hazewinkel, Michiel, ed. (2001) [1994], "Trigonometric functions", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
- Christopher M. Linton (2004). From Eudoxus to Einstein: A History of Mathematical Astronomy . Cambridge University Press.
- Weisstein, Eric W. "Trigonometric Addition Formulas". Wolfram MathWorld. Weiner.
Pranala luar
Cari tahu mengenai Trigonometry pada proyek-proyek Wikimedia lainnya: | |
Definisi dan terjemahan dari Wiktionary | |
Gambar dan media dari Commons | |
Berita dari Wikinews | |
Kutipan dari Wikiquote | |
Teks sumber dari Wikisource | |
Buku dari Wikibuku |
- Khan Academy: Trigonometry, free online micro lectures
- Trigonometric Delights, by Eli Maor, Princeton University Press, 1998. Ebook version, in PDF format, full text presented.
- Trigonometry by Alfred Monroe Kenyon and Louis Ingold, The Macmillan Company, 1914. In images, full text presented.
- Benjamin Banneker's Trigonometry Puzzle at Convergence
- Dave's Short Course in Trigonometry by David Joyce of Clark University
- Trigonometry, by Michael Corral, Covers elementary trigonometry, Distributed under GNU Free Documentation License