800 (angka)

bilangan asli
Revisi sejak 7 November 2018 19.08 oleh JohnThorne (bicara | kontrib) (Perbaikan)

800 (delapan ratus) adalah sebuah angka yaitu bilangan asli setelah 799 dan sebelum 801.

799 800 801
Kardinaldelapan ratus
Ordinalke-800
(kedelapan ratus)
Faktorisasi25· 52
Pembagi1, 2, dan 5
RomawiDCCC
Biner11001000002
Ternari10021223
Kuaternari302004
Quinary112005
Senary34126
Oktal14408
Duodesimal56812
Heksadesimal32016
Vigesimal20020
Basis 36M836

Merupakan jumlah empat bilangan prima berurutan (193 + 197 + 199 + 211) dan bilangan Harshad.

Bilangan bulat dari 801 sampai 899

800-an

  • 801 = 32 × 89, bilangan Harshad
  • 802 = 2 × 401, jumlah delapan bilangan prima berurutan (83 + 89 + 97 + 101 + 103 + 107 + 109 + 113), nontotient, happy nomor
  • 803 = 11 × 73, jumlah tiga bilangan prima (263 + 269 + 271), jumlah sembilan berturut-turut bilangan prima (71 + 73 + 79 + 83 + 89 + 97 + 101 + 103 + 107), Harshad nomor
  • 804 = 22 × 3 × 67, nontotient, Harshad nomor
    • "804" adalah julukan untuk Greater Richmond Wilayah dari negara bagian Virginia, yang berasal dari telepon kode area (meskipun kode area meliputi area yang lebih besar).
  • 805 = 5 × 7 × 23
  • 806 = 2 × 13 × 31, sphenic nomor, nontotient, totient sum untuk pertama 51 bilangan bulat, happy nomor
  • 807 = 3 × 269
  • 808 = 23 × 101, strobogrammatic nomor[1]
  • 809 = nomor perdana, Sophie Germain prime,[2] prima Chen, Eisenstein perdana dengan tidak ada bagian imajiner

810-an

  • 810 = 2 × 34 × 5, Harshad nomor
  • 811 = nomor perdana, jumlah lima berturut-turut bilangan prima (151 + 157 + 163 + 167 + 173), Chen perdana, nomor bahagia, Mertens fungsi dari 811 kembali 0
  • 812 = 22 × 7 × 29, pronic nomor,[3] yang Mertens fungsi 812 kembali 0
  • 813 = 3 × 271
  • 814 = 2 × 11 × 37, sphenic nomor, Mertens fungsi 814 kembali 0, nontotient
  • 815 = 5 × 163
  • 816 = 24 × 3 × 17, tetrahedral nomor,[4] padovan berkomitmen nomor,[5] Zuckerman nomor
  • 817 = 19 × 43, jumlah tiga bilangan prima (269 + 271 + 277), yang berpusat heksagonal nomor[6]
  • 818 = 2 × 409, nontotient, strobogrammatic nomor
  • 819 = 32 × 7 × 13, persegi piramida jumlah[7]

820-an

  • 820 = 22 × 5 × 41, segitiga, nomor,[8] Harshad nomor, nomor bahagia, repdigit (1111) di dasar 9
  • 821 = bilangan prima, prima kembar, Eisenstein perdana dengan tidak ada bagian imajiner, perdana quadruplet dengan 823, 827, 829
  • 822 = 2 × 3 × 137, jumlah dari dua belas berturut-turut bilangan prima (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97), sphenic jumlah, anggota Mian–Chowla urutan[9]
  • 823 = bilangan prima, prima kembar, Mertens fungsi 823 kembali 0, perdana quadruplet dengan 821, 827, 829
  • 824 = 23 × 103, jumlah sepuluh bilangan prima (61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101 + 103), yang Mertens fungsi 824 kembali 0, nontotient
  • 825 = 3 × 52 × 11, Smith jumlah,[10] yang Mertens fungsi 825 kembali 0, Harshad nomor
  • 826 = 2 × 7 × 59, nomor sphenic
  • 827 = bilangan prima, prima kembar, bagian dari perdana quadruplet dengan {821, 823, 829}, jumlah tujuh berturut-turut bilangan prima (103 + 107 + 109 + 113 + 127 + 131 + 137), Chen prime, Eisenstein perdana dengan tidak ada bagian imajiner, benar-benar non-palindromic nomor[11]
  • 828 = 22 × 32 × 23, Harshad nomor
  • 829 = bilangan prima, prima kembar, bagian dari perdana quadruplet dengan {827, 823, 821}, jumlah tiga bilangan prima (271 + 277 + 281), Chen perdana

830-an

  • 830 = 2 × 5 × 83, sphenic nomor, jumlah dari empat berturut-turut bilangan prima (197 + 199 + 211 + 223), nontotient, totient sum untuk pertama 52 bilangan bulat
  • 831 = 3 × 277
  • 832 = 26 × 13, Harshad nomor
  • 833 = 72 × 17
  • 834 = 2 × 3 × 139, sphenic nomor, jumlah enam berturut-turut bilangan prima (127 + 131 + 137 + 139 + 149 + 151), nontotient
  • 835 = 5 × 167, Motzkin nomor[12]
  • 836 = 22 × 11 × 19, nomor aneh
  • 837 = 33 × 31
  • 838 = 2 × 419
  • 839 = bilangan prima, aman perdana,[13] jumlah dari lima berturut-turut bilangan prima (157 + 163 + 167 + 173 + 179), Chen prime, Eisenstein perdana dengan tidak ada bagian imajiner, sangat cototient nomor[14]

840-an

  • 840 = 23 × 3 × 5 × 7, highly composite number,[15] angka terkecil yang dapat dibagi oleh angka 1 sampai 8 (lowest common multiple dari 1 sampai 8), jarang totient nomor,[16] Harshad jumlah dalam basis 2 melalui basis 10
  • 841 = 292 = 202 + 212, jumlah tiga bilangan prima (277 + 281 + 283), jumlah sembilan berturut-turut bilangan prima (73 + 79 + 83 + 89 + 97 + 101 + 103 + 107 + 109), berpusat di alun-alun,[17] yang berpusat heptagonal nomor,[18] yang berpusat oktagonal nomor[19]
  • 842 = 2 × 421, nontotient
  • 843 = 3 × 281, Lucas nomor[20]
  • 844 = 22 × 211, nontotient
  • 845 = 5 × 132
  • 846 = 2 × 32 × 47, jumlah delapan berturut-turut bilangan prima (89 + 97 + 101 + 103 + 107 + 109 + 113 + 127), nontotient, Harshad nomor
  • 847 = 7 × 112, nomor bahagia
  • 848 = 24 × 53
  • 849 = 3 × 283, Mertens fungsi 849 kembali 0

850-an

  • 850 = 2 × 52 × 17, Mertens fungsi dari 850 kembali 0, nontotient, maksimum yang mungkin Fair Isaac skor kredit, negara memanggil kode untuk Korea Utara
  • 851 = 23 × 37
  • 852 = 22 × 3 × 71, pentagonal nomor,[21] Smith jumlah
    • negara memanggil kode untuk Hong Kong
  • 853 = nomor perdana, Perrin nomor,[22] yang Mertens fungsi dari 853 kembali 0, rata-rata dari pertama 853 bilangan prima adalah bilangan bulat (urutan (barisan A045345 pada OEIS)OEIS(barisan A045345 pada OEIS), benar-benar non-palindromic nomor, nomor yang terhubung grafik dengan 7 node
    • negara memanggil kode untuk Macau
  • 854 = 2 × 7 × 61, nontotient
  • 855 = 32 × 5 × 19, decagonal nomor,[23] yang berpusat pada kubus nomor[24]
    • negara memanggil kode untuk Kamboja
  • 856 = 23 × 107, nonagonal nomor,[25] yang berpusat bersegi nomor,[26] happy nomor
    • negara memanggil kode untuk Laos
  • 857 = nomor perdana, jumlah tiga bilangan prima (281 + 283 + 293), Chen prime, Eisenstein perdana dengan tidak ada bagian imajiner
  • 858 = 2 × 3 × 11 × 13, Giuga nomor[27]
  • 859 adalah bilangan prima

860-an

  • 860 = 22 × 5 × 43, jumlah dari empat berturut-turut bilangan prima (199 + 211 + 223 + 227)
  • 861 = 3 × 7 × 41, sphenic nomor, segitiga, nomor, heksagonal nomor,[28] Smith jumlah
  • 862 = 2 × 431
  • 863 = bilangan prima, prima aman, jumlah dari lima berturut-turut bilangan prima (163 + 167 + 173 + 179 + 181), jumlah tujuh berturut-turut bilangan prima (107 + 109 + 113 + 127 + 131 + 137 + 139), Chen prime, Eisenstein perdana dengan tidak ada bagian imajiner
  • 864 = 25 × 33, jumlah yang prima kembar (431 + 433), jumlah enam berturut-turut bilangan prima (131 + 137 + 139 + 149 + 151 + 157), Harshad nomor
  • 865 = 5 × 173,
  • 866 = 2 × 433, nontotient
  • 867 = 3 × 172
  • 868 = 22 × 7 × 31, nontotient
  • 869 = 11 × 79, Mertens fungsi 869 kembali 0

870-an

  • 870 = 2 × 3 × 5 × 29, jumlah sepuluh bilangan prima (67 + 71 + 73 + 79 + 83 + 89 + 97 + 101 + 103 + 107), pronic nomor, nontotient, jarang totient nomor, Harshad nomor
    • Jumlah ini adalah sihir konstan dari n×n normal magic square dan n-queens problem untuk n = 12.
  • 871 = 13 × 67
  • 872 = 23 × 109, nontotient
  • 873 = 32 × 97, jumlah enam faktorial dari 1
  • 874 = 2 × 19 × 23, jumlah pertama dua puluh tiga bilangan prima, jumlah tujuh pertama faktorial dari 0, nontotient, Harshad nomor, nomor bahagia
  • 875 = 53 × 7
  • 876 = 22 × 3 × 73
  • 877 = nomor perdana, Bell nomor,[29] Chen prime, Mertens fungsi 877 kembali 0, benar-benar non-palindromic nomor.
  • 878 = 2 × 439, nontotient
  • 879 = 3 × 293

880-an

  • 880 = 24 × 5 × 11, Harshad nomor; 148-gonal nomor; jumlah n×n kotak ajaib untuk n = 4.
  • 881 = bilangan prima, prima kembar, jumlah sembilan berturut-turut bilangan prima (79 + 83 + 89 + 97 + 101 + 103 + 107 + 109 + 113), Chen prime, Eisenstein perdana dengan tidak ada bagian imajiner, happy nomor
  • 882 = 2 × 32 × 72, Harshad nomor, totient sum untuk pertama 53 bilangan bulat
  • 883 = bilangan prima, prima kembar, jumlah tiga bilangan prima (283 + 293 + 307), Mertens fungsi 883 kembali 0
  • 884 = 22 × 13 × 17, Mertens fungsi 884 kembali 0
  • 885 = 3 × 5 × 59, nomor sphenic
  • 886 = 2 × 443, Mertens fungsi 886 kembali 0
    • negara memanggil kode untuk Taiwan
  • 887 = nomor perdana diikuti oleh primal kesenjangan 20, aman perdana, Chen prime, Eisenstein perdana dengan tidak ada bagian imajiner
   
  • 888 = 23 × 3 × 37, jumlah delapan berturut-turut bilangan prima (97 + 101 + 103 + 107 + 109 + 113 + 127 + 131), Harshad nomor, strobogrammatic nomor[1]
  • 889 = 7 × 127, Mertens fungsi 889 kembali 0

890-an

  • 890 = 2 × 5 × 89, sphenic nomor, jumlah dari empat berturut-turut bilangan prima (211 + 223 + 227 + 229), nontotient
  • 891 = 34 × 11, jumlah lima berturut-turut bilangan prima (167 + 173 + 179 + 181 + 191), oktahedral nomor
  • 892 = 22 × 223, nontotient
  • 893 = 19 × 47, Mertens fungsi 893 kembali 0
    • Dianggap sebagai angka sial di Jepang, karena digit baca secara berurutan adalah terjemahan harfiah dari yakuza.
  • 894 = 2 × 3 × 149, sphenic nomor, nontotient
  • 895 = 5 × 179, Smith jumlah, Woodall nomor,[30] yang Mertens fungsi dari 895 kembali 0
  • 896 = 27 × 7, jumlah enam berturut-turut bilangan prima (137 + 139 + 149 + 151 + 157 + 163), yang Mertens fungsi 896 kembali 0
  • 897 = 3 × 13 × 23, sphenic nomor
  • 898 = 2 × 449, Mertens fungsi 898 kembali 0, nontotient
  • 899 = 29 × 31, happy nomor

Referensi

  1. ^ a b Sloane, N.J.A. (ed.). "Sequence A000787 (Strobogrammatic numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11.  Kesalahan pengutipan: Tanda <ref> tidak sah; nama ":0" didefinisikan berulang dengan isi berbeda
  2. ^ Sloane, N.J.A. (ed.). "Sequence A005384 (Sophie Germain primes)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  3. ^ Sloane, N.J.A. (ed.). "Sequence A002378 (Oblong (or promic, pronic, or heteromecic) numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  4. ^ Sloane, N.J.A. (ed.). "Sequence A000292 (Tetrahedral numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  5. ^ Sloane, N.J.A. (ed.). "Sequence A000931 (Padovan sequence)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  6. ^ Sloane, N.J.A. (ed.). "Sequence A003215 (Hex (or centered hexagonal) numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  7. ^ Sloane, N.J.A. (ed.). "Sequence A000330 (Square pyramidal numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  8. ^ Sloane, N.J.A. (ed.). "Sequence A000217 (Triangular numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  9. ^ Sloane, N.J.A. (ed.). "Sequence A005282 (Mian-Chowla sequence)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  10. ^ Sloane, N.J.A. (ed.). "Sequence A006753 (Smith numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  11. ^ Sloane, N.J.A. (ed.). "Sequence A016038 (Strictly non-palindromic numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  12. ^ Sloane, N.J.A. (ed.). "Sequence A001006 (Motzkin numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  13. ^ Sloane, N.J.A. (ed.). "Sequence A005385 (Safe primes)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  14. ^ Sloane, N.J.A. (ed.). "Sequence A100827 (Highly cototient numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  15. ^ Sloane, N.J.A. (ed.). "Sequence A002182 (Highly composite numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  16. ^ Sloane, N.J.A. (ed.). "Sequence A036913 (Sparsely totient numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  17. ^ Sloane, N.J.A. (ed.). "Sequence A001844 (Centered square numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  18. ^ Sloane, N.J.A. (ed.). "Sequence A069099 (Centered heptagonal numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  19. ^ Sloane, N.J.A. (ed.). "Sequence A016754 (Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  20. ^ Sloane, N.J.A. (ed.). "Sequence A000032 (Lucas numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  21. ^ Sloane, N.J.A. (ed.). "Sequence A000326 (Pentagonal numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  22. ^ Sloane, N.J.A. (ed.). "Sequence A001608 (Perrin sequence)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  23. ^ Sloane, N.J.A. (ed.). "Sequence A001107 (10-gonal (or decagonal) numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  24. ^ Sloane, N.J.A. (ed.). "Sequence A005898 (Centered cube numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  25. ^ Sloane, N.J.A. (ed.). "Sequence A001106 (9-gonal (or enneagonal or nonagonal) numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  26. ^ Sloane, N.J.A. (ed.). "Sequence A005891 (Centered pentagonal numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  27. ^ Sloane, N.J.A. (ed.). "Sequence A007850 (Giuga numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  28. ^ Sloane, N.J.A. (ed.). "Sequence A000384 (Hexagonal numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  29. ^ Sloane, N.J.A. (ed.). "Sequence A000110 (Bell or exponential numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  30. ^ Sloane, N.J.A. (ed.). "Sequence A003261 (Woodall numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11.