Momen inersia
Momen inersia (Satuan SI : kg m2) adalah ukuran kelembaman suatu benda untuk berotasi terhadap porosnya. Besaran ini adalah analog rotasi daripada massa. Momen inersia berperan dalam dinamika rotasi seperti massa dalam dinamika dasar, dan menentukan hubungan antara momentum sudut dan kecepatan sudut, momen gaya dan percepatan sudut, dan beberapa besaran lain. Meskipun pembahasan skalar terhadap momen inersia, pembahasan menggunakan pendekatan tensor memungkinkan analisis sistem yang lebih rumit seperti gerakan giroskopik.
Momen inersia | |
---|---|
Simbol umum | I |
Satuan SI | kg m2 |
Satuan lainnya | lbf·ft·s2 |
Dimensi SI | M L2 |
Turunan dari besaran lainnya |
Bagian dari seri artikel mengenai |
Mekanika klasik |
---|
Lambang dan kadang-kadang juga biasanya digunakan untuk merujuk kepada momen inersia.
Konsep ini diperkenalkan oleh Euler dalam bukunya a Theoria motus corporum solidorum seu rigidorum pada tahun 1730.[1] Dalam buku tersebut, dia mengupas momen inersia dan banyak konsep terkait.
Definisi skalar
Definisi sederhana momen inersia (terhadap sumbu rotasi tertentu) dari sembarang objek, baik massa titik atau struktur tiga dimensi, diberikan oleh rumus:
di mana m adalah massa dan r adalah jarak tegak lurus terhadap sumbu rotasi.
Analisis
Momen inersia (skalar) sebuah massa titik yang berputar pada sumbu yang diketahui didefinisikan oleh
Momen inersia adalah aditif. Jadi, untuk sebuah benda tegar yang terdiri atas N massa titik mi dengan jarak ri terhadap sumbu rotasi, momen inersia total sama dengan jumlah momen inersia semua massa titik:
Untuk benda pejal yang dideskripsikan oleh fungsi kerapatan massa ρ(r), momen inersia terhadap sumbu tertentu dapat dihitung dengan mengintegralkan kuadrat jarak terhadap sumbu rotasi, dikalikan dengan kerapatan massa pada suatu titik di benda tersebut:
di mana
- V adalah volume yang ditempati objek
- ρ adalah fungsi kerapatan spasial objek
- r = (r,θ,φ), (x,y,z), atau (r,θ,z) adalah vektor (tegaklurus terhadap sumbu rotasi) antara sumbu rotasi dan titik di benda tersebut.
Berdasarkan analisis dimensi saja, momen inersia sebuah objek bukan titik haruslah mengambil bentuk:
di mana
- M adalah massa
- R adalah jari-jari objek dari pusat massa (dalam beberapa kasus, panjang objek yang digunakan)
- k adalah konstanta tidak berdimensi yang dinamakan "konstanta inersia", yang berbeda-beda tergantung pada objek terkait.
Konstanta inersia digunakan untuk memperhitungkan perbedaan letak massa dari pusat rotasi. Contoh:
- k = 1, cincin tipis atau silinder tipis di sekeliling pusat
- k = 2/5, bola pejal di sekitar pusat
- k = 1/2, silinder atau piringan pejal di sekitar pusat.
Lihat pula
Referensi
- ^ Euler, Leonhard (1765-01-01). Theoria motus corporum solidorum seu rigidorum: ex primis nostrae cognitionis principiis stabilita et ad omnes motus, qui in huiusmodi corpora cadere possunt, accommodata. Auctore Leonh. Eulero (dalam bahasa Latin). Cornell University Library. ISBN 978-1429742818.