Teorema Pythagoras

hubungan dalam geometri Euklides antara tiga sisi segitiga siku-siku

Dalam matematika, teorema Pythagoras, juga dikenal sebagai teorema Pythagoras, adalah hubungan mendasar dalam geometri Euclidean di antara tiga sisi segitiga siku-siku. Ini menyatakan bahwa luas kotak yang sisinya adalah sisi miring (sisi yang berlawanan dengan sudut kanan) sama dengan jumlah area kotak di dua sisi lainnya. Teorema ini dapat ditulis sebagai persamaan yang menghubungkan panjang sisi a, b dan c, sering disebut "persamaan Pythagoras":[1]

Teori PythagorasJumlah area dari dua kotak pada kaki (a dan b) sama dengan luas kotak pada sisi miring (c).

di mana c mewakili panjang sisi miring dan a dan b panjang dari dua sisi segitiga lainnya. Teorema itu, yang sejarahnya menjadi pokok perdebatan, dinamai untuk pemikir Yunani kuno Pythagoras.[2]

Bukti penataan ulang

 
Bukti penataan ulang (klik untuk melihat animasi)

Dua kotak besar yang ditunjukkan pada gambar masing-masing berisi empat segitiga identik, dan satu-satunya perbedaan antara dua kotak besar adalah bahwa segitiga diatur secara berbeda. Oleh karena itu, ruang putih dalam masing-masing dari dua kotak besar harus memiliki luas yang sama. Menyamakan luas ruang putih menghasilkan teorema Pythagoras, Q.E.D.

Heath memberikan bukti ini dalam komentarnya tentang Proposisi I.47 dalam Elemen Euclid, dan menyebutkan proposal Bretschneider dan Hankel bahwa Pythagoras mungkin telah mengetahui bukti ini. Heath sendiri lebih menyukai proposal yang berbeda untuk bukti Pythagoras, tetapi mengakui dari permulaan diskusinya "bahwa literatur Yunani yang kita miliki milik lima abad pertama setelah Pythagoras tidak berisi pernyataan yang menyebutkan hal ini atau penemuan geometrik besar lainnya kepadanya."[3] Beasiswa terbaru telah menimbulkan keraguan yang semakin besar pada segala jenis peran untuk Pythagoras sebagai pencipta matematika, meskipun perdebatan tentang ini terus berlanjut.[4]

Bentuk-bentuk teorema lainnya

Jika c menunjukkan panjang sisi miring dan a dan b menunjukkan panjang dari dua sisi lainnya, teorema Pythagoras dapat dinyatakan sebagai persamaan Pythagoras:

 

Jika panjang a dan b diketahui, maka c dapat dihitung sebagai

 

Jika panjang sisi miring c dan satu sisi (a atau b) diketahui, maka panjang sisi lainnya dapat dihitung sebagai

 

atau

 

Persamaan Pythagoras menghubungkan sisi-sisi segitiga siku-siku dengan cara yang sederhana, sehingga jika panjang kedua sisi diketahui panjang sisi ketiga dapat ditemukan. Akibat wajar lain dari teorema adalah bahwa dalam segitiga siku-siku mana, sisi miring lebih besar daripada salah satu sisi lain, tetapi kurang dari jumlah mereka.

Generalisasi teorema ini adalah hukum cosinus, yang memungkinkan perhitungan panjang setiap sisi dari segitiga apa pun, mengingat panjang dua sisi lainnya dan sudut di antara keduanya. Jika sudut antara sisi lain adalah sudut kanan, hukum cosinus mereduksi menjadi persamaan Pythagoras.

Bukti teorema lainnya

Teorema ini mungkin memiliki bukti lebih dikenal daripada yang lain (hukum timbal balik kuadrat menjadi pesaing lain untuk perbedaan itu); buku The Pythagoras Proposition berisi 370 bukti.[5]

Bukti menggunakan segitiga serupa

 
Bukti menggunakan segitiga serupa

Bukti ini didasarkan pada Kesebandingan sisi-sisi dari dua segitiga yang sama, yaitu, pada kenyataan bahwa rasio dari setiap dua sisi yang sesuai dari segitiga yang sama adalah sama terlepas dari ukuran segitiga.

Biarkan ABC mewakili segitiga siku-siku, dengan sudut kanan terletak di C, seperti yang ditunjukkan pada gambar. Gambar ketinggian dari titik C, dan dikatakan H persimpangan dengan sisi AB. Titik H membagi panjang sisi miring c menjadi bagian d dan e. ACH segitiga baru sama dengan segitiga ABC, karena mereka berdua memiliki sudut kanan (menurut definisi ketinggian), dan mereka berbagi sudut pada A, yang berarti bahwa sudut ketiga akan sama di kedua segitiga juga, ditandai sebagai θ pada gambar. Dengan alasan yang sama, segitiga CBH juga mirip dengan ABC. Bukti kesamaan segitiga membutuhkan postulat segitiga: jumlah sudut dalam segitiga adalah dua sudut kanan, dan setara dengan postulat paralel. Kesamaan segitiga menyebabkan rasio kesetaraan dari sisi yang sesuai:

 

Hasil pertama menyamakan cosinus dari sudut θ, sedangkan hasil kedua menyamakan sinus mereka.

Rasio ini dapat ditulis sebagai

 

Menjumlahkan kedua persamaan ini menghasilkan

 

yang, setelah penyederhanaan, mengekspresikan teorema Pythagoras:

 

Peran bukti ini dalam sejarah adalah subjek banyak spekulasi. Pertanyaan mendasarnya adalah mengapa Euclid tidak menggunakan bukti ini, tetapi menemukan yang lain. Salah satu dugaan adalah bahwa bukti dari segitiga yang sama melibatkan teori proporsi, topik yang tidak dibahas sampai nanti dalam Elemen, dan bahwa teori proporsi membutuhkan pengembangan lebih lanjut pada waktu itu.[6][7]

Lihat pula

Bacaan Lebih Lanjut

  • Siswono, Tatang Yuli Eko (2007). Matematika 2 SMP dan MTs untuk Kelas VIII. Jakarta: Esis/Erlangga. ISBN 979-734-666-8.  (Indonesia)

Pranala luar

  1. ^ Sally, Judith D. (2007-01-01). Roots to Research: A Vertical Development of Mathematical Problems (dalam bahasa Inggris). American Mathematical Soc. ISBN 978-0-8218-7267-3. 
  2. ^ Benson, Donald C. (2000). The Moment of Proof: Mathematical Epiphanies (dalam bahasa Inggris). Oxford University Press. ISBN 978-0-19-513919-8. 
  3. ^ "Pythagorean theorem". Wikipedia (dalam bahasa Inggris). 2020-05-26. 
  4. ^ Huffman, Carl (2005-02-23). "Pythagoras". 
  5. ^ "Pythagorean theorem". Wikipedia (dalam bahasa Inggris). 2020-05-26. 
  6. ^ (Maor 2007, hlm. 39)
  7. ^ Stephen W. Hawking (2005). God created the integers: the mathematical breakthroughs that changed history. Philadelphia: Running Press Book Publishers. hlm. 12. ISBN 0-7624-1922-9.  This proof first appeared after a computer program was set to check Euclidean proofs.