Optika
Optik adalah cabang fisika yang menggambarkan kelakuan dan sifat cahaya dan interaksi cahaya dengan materi. Optik menerangkan dan diwarnai oleh gejala optik. Kata optik berasal dari bahasa Latin ὀπτική, yang berarti tampilan.
Bidang optik biasanya menggambarkan sifat cahaya tampak, inframerah dan ultraviolet; tetapi karena cahaya adalah gelombang elektromagnetik, gejala yang sama juga terjadi di sinar-X, gelombang mikro, gelombang radio, dan bentuk lain dari radiasi elektromagnetik dan juga fenomena serupa seperti pada sorotan partikel muatan (charged beam). Optik secara umum dapat dianggap sebagai bagian dari keelektromagnetan. Beberapa fenomena optik bergantung pada sifat kuantum cahaya yang terkait dengan beberapa bidang optik hingga mekanika kuantum. Dalam prakteknya, kebanyakan dari fenomena optik dapat dihitung dengan menggunakan sifat elektromagnetik dari cahaya, seperti yang dijelaskan oleh persamaan Maxwell.
Bidang optik memiliki identitas, masyarakat, dan konferensinya sendiri. Aspek keilmuannya sering disebut ilmu optik atau fisika optik. Ilmu optik terapan sering disebut rekayasa optik. Aplikasi dari rekayasa optik yang terkait khusus dengan sistem iluminasi (iluminasi) disebut rekayasa pencahayaan. Setiap disiplin cenderung sedikit berbeda dalam aplikasi, keterampilan teknis, fokus, dan afiliasi profesionalnya. Inovasi lebih baru dalam rekayasa optik sering dikategorikan sebagai fotonika atau optoelektronika. Batas-batas antara bidang ini dan "optik" sering tidak jelas, dan istilah yang digunakan berbeda di berbagai belahan dunia dan dalam berbagai bidang industri.
Karena aplikasi yang luas dari ilmu "cahaya" untuk aplikasi dunia nyata, bidang ilmu optik dan rekayasa optik cenderung sangat lintas disiplin. Ilmu optik merupakan bagian dari berbagai disiplin terkait termasuk elektro, fisika, psikologi, kedokteran (khususnya optalmologi dan optometri), dan lain-lain. Selain itu, penjelasan yang paling lengkap tentang perilaku optik, seperti dijelaskan dalam fisika, tidak selalu rumit untuk kebanyakan masalah, jadi model sederhana dapat digunakan. Model sederhana ini cukup untuk menjelaskan sebagian fenomena optik serta mengabaikan perilaku yang tidak relevan dan / atau tidak terdeteksi pada suatu sistem.
Di ruang bebas suatu gelombang berjalan pada kecepatan c = 3x108 m/s. Ketika memasuki medium tertentu (dielectric atau nonconducting) gelombang berjalan dengan suatu kecepatan v, yang mana adalah karakteristik dari bahan dan kurang dari besarnya kecepatan cahaya itu sendiri (c). Perbandingan kecepatan cahaya didalam ruang hampa dengan kecepatan cahaya di medium adalah indeks bias n bahan sebagai berikut : n = c/v
Optik klasik
Sebelum optik kuantum menjadi penting, optik pada dasarnya terdiri dari aplikasi elektromagnetik klasik dan pendekatan frekuensi tinggi untuk cahaya. Optik klasik terbagi menjadi dua cabang utama: optik geometris dan optik fisik.
Optik geometris, atau optik sinar, menjelaskan propagasi cahaya dalam bentuk "sinar". Sinar dibelokkan di antarmuka antara dua medium yang berbeda, dan dapat berbentuk kurva di dalam medium yang mana indeks-refraksinya merupakan fungsi dari posisi. "Sinar" dalam optik geometris merupakan objek abstrak, atau "instrumen", yang sejajar dengan muka gelombang dari gelombang optik sebenarnya. Optik geometris menyediakan aturan untuk penyebaran sinar ini melalui sistem optik, yang menunjukkan bagaimana sebenarnya muka gelombang akan menyebar. Ini adalah penyederhanaan optik yang signifikan, dan gagal untuk memperhitungkan banyak efek optik penting seperti difraksi dan polarisasi. Namun hal ini merupakan pendekatan yang baik, jika panjang gelombang cahaya tersebut sangat kecil dibandingkan dengan ukuran struktur yang berinteraksi dengannya. Optik geometris dapat digunakan untuk menjelaskan aspek geometris dari penggambaran cahaya (imaging), termasuk aberasi optik.
Optik geometris sering disederhanakan lebih lanjut oleh pendekatan paraksial, atau "pendekatan sudut kecil." Perilaku matematika yang kemudian menjadi linear, memungkinkan komponen dan sistem optik dijelaskan dalam bentuk matrik sederhana. Ini mengarah kepada teknik optik Gauss dan penelusuran sinar paraksial, yang digunakan untuk menemukan properti order pertama dari sistem optik, misalnya memperkirakan posisi dan magnifikasi dari gambar dan objek. Propagasi sorotan Gauss merupakan perluasan dari optik paraksial yang menyediakan model lebih akurat dari radiasi koheren seperti sorotan laser. Walaupun masih menggunakan pendekatan paraksial, teknik ini memperhitungkan difraksi, dan memungkinkan perhitungan pembesaran sinar laser yang sebanding dengan jarak, serta ukuran minimum sorotan yang dapat terfokus. Propagasi sorotan Gauss menjembatani kesenjangan antara optik geometris dan fisik.
Optik fisik atau optik gelombang membentuk prinsip Huygens dan memodelkan propagasi dari gelombang muka kompleks melalui sistem optik, termasuk amplitud dan fasa dari gelombang. Teknik ini, yang biasanya diterapkan secara numerik pada komputer, dapat menghitung efek difraksi, interferensi, polarisasi, serta efek kompleks lain. Akan tetapi pada umumnya aproksimasi masih digunakan, sehingga tidak secara lengkap memodelkan teori gelombang elektromagnetik dari propagasi cahaya. Model lengkap tersebut jauh lebih menuntut komputasi, akan tetapi dapat digunakan untuk memecahkan permasalahan kecil yang memerlukan pemecahan lebih akurat.
Topik yang berkaitan dengan optik klasik
Optik modern
Modern optik meliputi bidang sains dan rekayasa optik yang menjadi terkenal pada abad ke 20. Bidang-bidang ilmu optik ini biasanya berhubungan dengan elektromagnetik atau properti kuantum dari cahaya tetapi tidak termasuk topik lain.
Topik yang berkaitan dengan optik modern
Optik sehari-hari
Optik adalah bagian dari kehidupan sehari-hari. Pelangi dan bayangan adalah contoh fenomena optik. Banyak orang mendapat manfaat dari kacamata atau lensa kontak, dan optik digunakan di banyak barang konsumen termasuk kamera. Superimposisi dari struktur periodik, misalnya tisu transparan dengan struktur kisi, menghasilkan bentuk yang dikenal sebagai pola moiré. Superimposisi dari pola periodik transparan yang terdiri garis atau kurva buram paralel memproduksi pola garis moiré.
Bidang optik lain
Lihat juga
|
|
Masyarakat
Referensi
- Born, Max;Wolf, Emil. Principles of Optics (7th ed.). Pergamon Press, 1999.
- Hecht, Eugene (2001). Optics (4th ed.). Pearson Education. ISBN 0-8053-8566-5.
- Serway, Raymond A.; Jewett, John W. (2004). Physics for Scientists and Engineers (6th ed.). Brooks/Cole. ISBN 0-534-40842-7.
- Tipler, Paul (2004). Physics for Scientists and Engineers: Electricity, Magnetism, Light, and Elementary Modern Physics (5th ed.). W. H. Freeman. ISBN 0-7167-0810-8.
- Lipson, Stephen G. (1995). Optical Physics (3rd ed.). Cambridge University Press. ISBN 0-5214-3631-1.
Pranala luar
Buku teks dan tutorial
- Optics — buku teks open-source tentang Optik
- Optics2001 — Perpustakaan dan komunitas optik