Pengguna:NFarras/Proyek 3
Dalam dinamika fluida, pendangkalan gelombang merupakan efek perubahan tinggi gelombang air ketika ombak merambat pada perairan yang lebih dangkal. Dalam kondisi stasioner, penurunan kelajuan transpor harus disertai dengan kenaikan kerapatan energi supaya fluks energi tetap konstan.[2] Panjang gelombang yang mengalami pendangkalan akan berkurang, sementara frekuensinya akan tetap konstan.
Pada perairan yang dangkal dan memiliki kontur paralel, gelombang yang tidak pecah akan meningkat tingginya ketika memasuki perairan yang lebih dangkal.[3] Hal ini terjadi pada gelombang tsunami yang mengalami peningkatan tinggi gelombang ketika mendekati garis pantai.
Ikhtisar
Gelombang yang mendekati wilayah pesisir mengalami perubahan tinggi melalui beberapa efek yang berbeda. Beberapa proses penting gelombang antara lain refraksi, difraksi, refleksi, gelombang pecah, interaksi gelombang–arus, gesekan, pertumbuhan gelombang akibat angin, dan pendangkalan gelombang. Pendangkalan gelombang adalah perubahan ketinggian gelombang yang hanya dipengaruhi oleh perubahan kedalaman – tanpa perubahan arah rambat gelombang dan disipasi. Tinggi gelombang pada lokasi tertentu dapat dinyatakan dengan rumus:[4][5]
dengan adalah koefisien pendangkalan dan adalah tinggi gelombang di perairan dalam. Koefisien pendangkalan bergantung pada kedalaman air lokal dan frekuensi gelombang[6] (dapat dicari menggunakan rumus ). Perairan dalam merupakan kondisi ketika dasar perairan tidak terlalu mempengaruhi gelombang. Kondisi ini terjadi ketika kedalaman lebih besar daripada sekitar setengah panjang gelombang di laut dalam
Physics
For non-breaking waves, the energy flux associated with the wave motion, which is the product of the wave energy density with the group velocity, between two wave rays is a conserved quantity (i.e. a constant when following the energy of a wave packet from one location to another). Under stationary conditions the total energy transport must be constant along the wave ray – as first shown by William Burnside in 1915.[7] For waves affected by refraction and shoaling (i.e. within the geometric optics approximation), the rate of change of the wave energy transport is:[5]
For shallow water, when the wavelength is much larger than the water depth – in case of a constant ray distance (i.e. perpendicular wave incidence on a coast with parallel depth contours) – wave shoaling satisfies Green's law:
with the mean water depth, the wave height and the fourth root of
Water wave refraction
Following Phillips (1977) and Mei (1989),[8][9] denote the phase of a wave ray as
- .
The local wave number vector is the gradient of the phase function,
- ,
and the angular frequency is proportional to its local rate of change,
- .
Simplifying to one dimension and cross-differentiating it is now easily seen that the above definitions indicate simply that the rate of change of wavenumber is balanced by the convergence of the frequency along a ray;
- .
Assuming stationary conditions ( ), this implies that wave crests are conserved and the frequency must remain constant along a wave ray as . As waves enter shallower waters, the decrease in group velocity caused by the reduction in water depth leads to a reduction in wave length because the nondispersive shallow water limit of the dispersion relation for the wave phase speed,
dictates that
- ,
i.e., a steady increase in k (decrease in ) as the phase speed decreases under constant .
Lihat pula
- Airy wave theoryLua error in Modul:WikidataDescription at line 7: bad argument #1 to 'sub' (string expected, got nil).
- Breaking waveLua error in Modul:WikidataDescription at line 7: bad argument #1 to 'sub' (string expected, got nil).
- Dispersion (water waves)Lua error in Modul:WikidataDescription at line 7: bad argument #1 to 'sub' (string expected, got nil).
- Ocean surface wavesLua error in Modul:WikidataDescription at line 7: bad argument #1 to 'sub' (string expected, got nil).
- Shallow water equationsLua error in Modul:WikidataDescription at line 7: bad argument #1 to 'sub' (string expected, got nil).
- ShoalLua error in Modul:WikidataDescription at line 7: bad argument #1 to 'sub' (string expected, got nil).
- Waves and shallow waterLua error in Modul:WikidataDescription at line 7: bad argument #1 to 'sub' (string expected, got nil).
- Wave heightLua error in Modul:WikidataDescription at line 7: bad argument #1 to 'sub' (string expected, got nil).
- Ursell numberLua error in Modul:WikidataDescription at line 7: bad argument #1 to 'sub' (string expected, got nil).
Catatan
- ^ Wiegel, R.L. (2013). Oceanographical Engineering. Dover Publications. hlm. 17, Figure 2.4. ISBN 978-0-486-16019-1.
- ^ Longuet-Higgins, M.S.; Stewart, R.W. (1964). "Radiation stresses in water waves; a physical discussion, with applications" (PDF). Deep-Sea Research and Oceanographic Abstracts. 11 (4): 529–562. Bibcode:1964DSRA...11..529L. doi:10.1016/0011-7471(64)90001-4.
- ^ WMO (1998). Guide to Wave Analysis and Forecasting (PDF). 702 (edisi ke-2). World Meteorological Organization. ISBN 92-63-12702-6.
- ^ Kesalahan pengutipan: Tag
<ref>
tidak sah; tidak ditemukan teks untuk ref bernamagod00
- ^ a b c Kesalahan pengutipan: Tag
<ref>
tidak sah; tidak ditemukan teks untuk ref bernamadal91
- ^ "Pengertian Tsunami Shoaling · Pencarian.id". Pencarian.id. 2021-05-11. Diakses tanggal 2021-05-11.
- ^ Burnside, W. (1915). "On the modification of a train of waves as it advances into shallow water". Proceedings of the London Mathematical Society. Series 2. 14: 131–133. doi:10.1112/plms/s2_14.1.131.
- ^ Phillips, Owen M. (1977). The dynamics of the upper ocean (2nd ed.). Cambridge University Press. ISBN 0-521-29801-6.
- ^ Mei, Chiang C. (1989). The Applied Dynamics of Ocean Surface Waves. Singapore: World Scientific. ISBN 9971-5-0773-0.