Tanda lebih besar

Revisi sejak 17 Mei 2006 00.14 oleh Borgx (bicara | kontrib) ({{rapikan}})

Konsep 'lebih besar' antara dua bilangan cacah gampang dimengerti oleh seorang awam, bahkan oleh seorang anak kecil sekalipun. Tetapi banyak yang tidak mengetahui atau pernah mendengar salah satu definisi dari konsep 'lebih besar' ini.

Berikut adalah salah satu - kalau bukan satu-satunya - definisi konsep 'lebih besar' antara dua bilangan cacah secara matematis. Karena definisi ini dibangun melalui teori himpunan, maka harus diasumsikan lebih dahulu keberadaan himpunan hingga (Inggris: finite set) dan berlakunya berbagai konsep lain yang menyertainya, misalnya konsep himpunan bagian (Inggris: subset), konsep inklusi antara dua himpunan, dsb.

Untuk menghindari definisi matematis formal yg terlalu mendalam (yg memerlukan konsep pemetaan atau fungsi, khususnya konsep isomorfisma antara dua himpunan yg berukuran sama), secara gampang dan kasar, suatu bilangan cacah bisa didefinisikan oleh suatu kelas ekuivalensi berisi sekumpulan himpunan-himpunan yang berhingga dan yang berukuran sama.

Pada khususnya kelas ekuivalensi yg memuat himpunan kosong menyatakan bilangan nol dan para matematikawan di dunia sepakat untuk menulis bilangan cacah ini dengan lambang

                         0.

Sedangkan kelas ekuivalensi yg memuat kedua himpunan

                     {a, x, y} 

dan himpunan

               {ayam, bebek, kecoa}

mendefinisikan sebuah bilangan cacah yang biasanya secara tertulis diberi lambang

                         3. 

Kedua himpunan {a, x, y} dan {ayam, bebek, kecoa} yang mewakili kelas ekuivalensi tersebut kita katakan berukuran 3.

Bilangan cacah b didefinisikan lebih besar dari bilangan cacah a jika ada himpunan A yg berukuran a dan himpunan B yg berukuran b sedemkikan rupa sehinga A termuat dalam B. Perhatikan, kata 'termuat' sebenarnya harus didefinisikan dengan menggunakan relasi inklusi.

Untuk setiap pasang bilangan cacah a dan b yg berbeda, a dikatakan lebih kecil dari b jika dan hanya jika b lebih besar daripada a. Karena himpunan kosong termuat dalam setiap himpunan lain, maka 0 lebih kecil dari bilangan cacah lainnya.

Definisi lebih besar atau lebih kecil untuk jenis bilangan-bilangan lain yang bukan bilangan cacah memerlukan pengetahuan matematika yg cukup mendalam.