Massa

pengukuran kuantitatif dari perlawanan objek fisik menjadi kecepatan dengan sebuah tenaga dan kekuatan dari tarikan gravitasi dengan objek lain
Revisi sejak 6 November 2012 21.40 oleh MerlIwBot (bicara | kontrib) (bot Menambah: pms:Massa (fìsica))

Massa (berasal dari bahasa Yunani μάζα) adalah suatu sifat fisika dari suatu benda yang digunakan untuk menjelaskan berbagai perilaku objek yang terpantau. Dalam kegunaan sehari-hari, massa biasanya disinonimkan dengan berat. Namun menurut pemahaman ilmiah modern, berat suatu objek diakibatkan oleh interaksi massa dengan medan gravitasi.

Sebagai contoh, seseorang yang mengangkat benda berat di Bumi dapat mengasosiasi berat benda tersebut dengan massanya. Asosiasi ini dapat diterima untuk benda-benda yang berada di Bumi. Namun apabila benda tersebut berada di Bulan, maka berat benda tersebut akan lebih kecil dan lebih mudah diangkat namun massanya tetaplah sama.

Tubuh manusia dilengkapi dengan indera-indera perasa yang membuat kita dapat merasakan berbagai fenomena-fenomena yang diasosiasikan dengan massa. Seseorang dapat mengamati suatu objek untuk menentukan ukurannya, mengangkatnya untuk merasakan beratnya, dan mendorongnya untuk merasakan gaya gesek inersia benda tersebut. Penginderaan ini merupakan bagian dari pemahaman kita mengenai massa, namun tiada satupun yang secara penuh dapat mewakili konsep abstrak massa. Konsep abstrak bukanlah berasal dari penginderaan, melainkan berasal dari gabungan berbagai pengalaman manusia.

Newton

Konsep modern massa diperkenalkan oleh Sir Isaac Newton (1642-1727) dalam penjelasan gravitasi dan inersia yang dikembangkannya. Sebelumnya, berbagai fenomena gravitasi dan inersia dipandang sebagai dua hal yang berbeda dan tidak berhubungan. Namun, Isaac Newton menggabungkan fenomena-fenomena ini dan berargumen bahwa kesemuaan fenomena ini disebabkan oleh adanya keberadaan massa.

Satuan-satuan massa

Alat yang digunakan untuk mengukur massa biasanya adalah timbangan. Dalam satuan SI, massa diukur dalam satuan kilogram, kg. Terdapat pula berbagai satuan-satuan massa lainnya, misalnya:

  • gram: 1 g = 0,001 kg (1000 g = 1 kg)
  • ton: 1 ton = 1000 kg
  • MeV/c2 (Umumnya digunakan untuk mengalamatkan massa partikel subatom.)

Pada situasi normal, berat suatu objek adalah sebanding dengan massanya. Namun pembedaan antara massa dengan berat diperlukan untuk pengukuran berpresisi tinggi.

Oleh karena hubungan relativistik antara massa dengan energi, adalah mungkin untuk menggunakan satuan energi untuk mewakili massa. Sebagai contoh, eV normalnya digunakan sebagai satuan massa (kira-kira 1,783×10−36 kg) dalam fisika partikel. itu lah rumusnya...

Ringkasan dari konsep massa dan formalisme

Dalam mekanika klasik, massa mempunyai peranan penting dalam menentukan sifat-sifat suatu benda. Hukum kedua Newton menyatakan bahwa gaya F adalah massa benda (m) dikalikan dengan percepatan a:

 

Selain itu, massa juga berhubungan dengan momentum p dan kecepatan v dengan rumus:

 

dan juga energi kinetik Ek dengan kecepatan, dengan rumus:

 

Ringkasan konsep-konsep massa

 
Diagram di atas mengilustrasikan hubungan antara lima sifat-sifat massa beserta tetapan proporsionalitas yang menghubungkan kelima konsep ini. Tiap-tiap sampel massa dipercayai memiliki lima sifat ini, namun oleh karena nilai tetapan proporsionalitas yang besar, umumnya sangat sulit untuk memverifikasi lebih dari dua atau tiga sifat pada sampel massa tertentu.
* Jari-jari Schwarzschild ( ) mewakili kemampuan massa menyebabkan pelengkungan ruang dan waktu.
* Parameter gravitasional standar ( ) mewakili kemampuan benda masif melakukan gaya gravitasi Newton terhadap benda lain.
* Massa inersia ( ) mewakili respon Newtonian massa terhadap gaya.
* Energi diam ( ) mewakili kemampuan massa diubah menjadi bentuk-bentuk energi yang lain.
* Panjang gelombang Compton ( ) mewakili respon kuantum massa terhadap geometri lokal.

Dalam ilmu fisika, kita dapat secara konseptual membedakan paling tidak tujuh corak massa ataupun tujuh fenomena fisika yang dapat dijelaskan menggunakan konsep massa:[1]

  • Massa inersia merupakan ukuran resistansi suatu objek untuk mengubah keadaan geraknya ketika suatu gaya diterapkan. Ia ditentukan dengan menerapkan gaya ke sebuah objek dan mengukur percepatan yang dihasilkan oleh gaya tersebut. Objek dengan massa inersia yang rendah akan berakselerasi lebih cepat daripada objek dengan massa inersia yang besar. Dapat dikatakan, benda dengan massa yang lebih besar memiliki inersia yang lebih besar.
  • Jumlah materi pada beberapa jenis sampel dapat ditentukan secara persis melalui elektrodeposisi ataupun proses-proses lainnya. Massa persis suatu sampel ditentukan dengan menghitung jumlah dan jenis atom-atom yang terdapat di dalamnya. Selain itu, dihitung pula eneri yang terlibat dalam pengikatan atom-atom tersebut (bertanggung jawab terhadap defisit massa ataupun massa yang hilang).
  • Massa gravitasional aktif merupakan ukuran kekuatan fluks gravitasional. Medan gravitasi dapat diukur dengan mengijinkan suatu objek jatuh bebas dan mengukur perpecapatan jatuh bebas benda tersebut. Sebagai contoh, suatu objek yang jatuh bebas di Bulan akan menerima medan gravitasi yang sedikit, sehingga berakselerasi lebih lambat daripada apabila benda tersebut jatuh bebas di bumi. Medan gravitasi bulan lebih lemah karena Bulan memiliki massa gravitasional aktif yang lebih kecil.
  • Massa gravitasional pasif merupakan ukuran kekuatan interaksi suatu objek dengan medan gravitasi. Massa gravitasional pasif ditentukan dengan membagi berat objek dengan percepatan jatuh bebas objek itu sendiri. Dua objek dalam medan gravitasi yang sama akan mengalami percepatan yang sama. Namun objek dengan massa gravitasional pasif lebih kecil akan mengalami gaya yang lebih kecil (berat lebih ringan daripada objek dengan massa gravitasiional pasif yang besar.
  • Energi juga bermassa menurut prinsip kesetaraan massa-energi. Kesetaraan ini dapat terlihat pada proses fusi nuklir dan lensa gravitasi. Pada fusi nuklir, sejumlah massa diubah menjadi energi. Pada fenomena pelensaan gravitasi pula, foton yang merupakan energi memperlihatkan perilaku yang mirip dengan massa gravitasional pasif.
  • Pelengkungan ruang waktu adalah manifestasi relativistik akan keberadaan massa. Pelengkungan ini sangatlah lemah dan sulit diukur. Oleh karena itu, fenomena ini barulah ditemukan setelah teori relativitas umum Einstein memprediksinya. Jam atom dengan presisi yang sangat tinggi ditemukan berjalan lebih lambat di bumi dibandingkan dengan jam atom yang berjalan di ruang angkasa. Perbedaan waktu ini dinamakan dilasi waktu gravitasional.
  • Massa kuantum merupakan perbedaan antara frekuensi kuantum suatu objek dengan bilangan gelombangnya:  . Massa kuantum sebuah elektron dapat ditentukan menggunakan berbagai macam spektroskopi dan utamanya berkaitan erat dengan tetapan Rydberg, jari-jari Bohr, dan jari-jari elektron klasik. Massa kuantum benda yang lebih besar dapat diukur secara langsung menggunakan timbangan watt.

Referensi dan pranala luar

  1. ^ W. Rindler (2006). op. cit.. Oxford: Oxford Univ. Press. hlm. 16; Section 1.12. ISBN 0198567316. 

Templat:Link FA Templat:Link FA Templat:Link GA