Rumus integral lintasan
Rumus integral lintasan dari mekanika kuantum adalah deskripsi dari teori kuantum yang menggeneralisasi prinsip tindakan dari mekanika klasik. Formula ini menggantikan gagasan klasik tunggal, lintasan unik klasik untuk sistem dengan penjumlahan atau integral fungsional, melalui ketakhinggaan kemungkinan lintasan kuantum mekanis untuk menghitung amplitudo kuantum.
Bacaan lanjutan
- Feynman, R. P.; Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals. New York: McGraw-Hill. ISBN 0-07-020650-3. The historical reference, written by the inventor of the path integral formulation himself and one of his students.
- Kleinert, Hagen (2004). Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (edisi ke-4th). Singapore: World Scientific. ISBN 981-238-107-4.
- Zinn Justin, Jean (2004). Path Integrals in Quantum Mechanics. Oxford University Press. ISBN 0-19-856674-3.
- Schulman, Larry S. (1981). Techniques & Applications of Path Integration. New York: John Wiley & Sons. ISBN 0-486-44528-3.
- Ahmad, Ishfaq (1971). Mathematical Integrals in Quantum Nature. The Nucleus. hlm. 189–209.
- Inomata, Akira; Kuratsuji, Hiroshi; Gerry, Christopher (1992). Path Integrals and Coherent States of SU(2) and SU(1,1). Singapore: World Scientific. ISBN 981-02-0656-9.
- Grosche, Christian & Steiner, Frank (1998). Handbook of Feynman Path Integrals. Springer Tracts in Modern Physics 145. Springer-Verlag. ISBN 3-540-57135-3.
- Tomé, Wolfgang A. (1998). Path Integrals on Group Manifolds. Singapore: World Scientific. ISBN 981-02-3355-8. Discusses the definition of Path Integrals for systems whose kinematical variables are the generators of a real separable, connected Lie group with irreducible, square integrable representations.
- Klauder, John R. (2010). A Modern Approach to Functional Integration. New York: Birkhäuser. ISBN 978-0-8176-4790-2.
- Ryder, Lewis H. (1985). Quantum Field Theory. Cambridge University Press. ISBN 0-521-33859-X. Highly readable textbook; introduction to relativistic QFT for particle physics.
- Rivers, R. J. (1987). Path Integrals Methods in Quantum Field Theory. Cambridge University Press. ISBN 0-521-25979-7.
- Mazzucchi, S. (2009). Mathematical Feynman path integrals and their applications. World Scientific. ISBN 978-981-283-690-8.
- Albeverio, S.; Hoegh-Krohn. R. & Mazzucchi, S. (2008). Mathematical Theory of Feynman Path Integral. Lecture Notes in Mathematics 523. Springer-Verlag. ISBN 9783540769569.
- Glimm, James & Jaffe, Arthur (1981). Quantum Physics: A Functional Integral Point of View. New York: Springer-Verlag. ISBN 0-387-90562-6.
- Simon, Barry (1979). Functional Integration and Quantum Phyiscs. New York: Academic Press. ISBN 0-8218-6941-8.
- Johnson, Gerald W.; Lapidus, Michel L. (2002). The Feynman Integral and Feynman's Operational Calculus. Oxford Mathematical Monographs. Oxford University Press. ISBN 0-19-851572-3.
- Müller-Kirsten, Harald J. W. (2012). Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral (edisi ke-2nd). Singapore: World Scientific.
- Etingof, Pavel (2002). "Geometry and Quantum Field Theory". MIT OpenCourseWare. This course, designed for mathematicians, is a rigorous introduction to perturbative quantum field theory, using the language of functional integrals.
- Zee, Anthony. Quantum Field Theory in a Nutshell (edisi ke-Second). Princeton University Press. ISBN 978-0-691-14034-6. A great introduction to Path Integrals (Chapter 1) and QFT in general.
- Grosche, Christian (1992). "An Introduction into the Feynman Path Integral". arΧiv:hep-th/9302097.
- MacKenzie, Richard (2000). "Path Integral Methods and Applications". arΧiv:quant-ph/0004090.
- DeWitt-Morette, Cécile (1972). "Feynman's path integral: Definition without limiting procedure". Communication in Mathematical Physics. 28 (1): 47–67. Bibcode:1972CMaPh..28...47D. doi:10.1007/BF02099371. MR 0309456.
- Cartier, Pierre; DeWitt-Morette, Cécile (1995). "A new perspective on Functional Integration". Journal of Mathematical Physics. 36 (5): 2137–2340. arXiv:funct-an/9602005 . Bibcode:1995JMP....36.2237C. doi:10.1063/1.531039.