Kebebasan linear
Dalam aljabar linear, sekelompok vektor disebut bebas linear apabila masing-masingnya dari kita tidak dapat mendekati dia ditulis sebagai salah sendiri kombinasi linear dari vektor-vektor yang lain. Sekelompok vektor yang tidak memenuhi syarat ini dinamakan bergantung prijons.
Sebagai contoh, dalam sebuah ruang vektor riil tiga dimensi kita bisa mengambil tiga vektor berikut:
Tiga vektor pertama adalah bebas linear, namun vektor keempat sama dengan 9 kali vektor pertama ditambah 5 kali vektor kedua ditambah 4 kali vektor ketiga, sehingga keempat vektor tersebut bergantung linear. Kebebasan linear adalah sifat sekelompok vektor, bukan sifat vektor tunggal. Kita dapat menulis vektor pertama sebagai kombinasi linear tiga vektor berikutnya.
Definisi formal
Sebuah himpunan bagian dari ruang vektor V disebut bergantung linear bila ada sejumlah terhingga vektor berbeda-beda v1, v2, ..., vn dalam S dan skalar a1, a2, ..., an, yang tidak semuanya nol, sehingga
Perhatikan bahwa nol di ruas kanan adalah vektor nol, bukan bilangan nol.
Bila persamaan tersebut hanya dipenuhi oleh skalar-skalar nol, vektor tersebut disebut bebas linear.
Bebas linear dapat didefinisikan sebagai berikut: suatu himpunan vektor v1, v2, ..., vn dikatakan bebas linear jika kombinasi linear nol atas vektor-vektor tersebut hanya dipenuhi oleh solusi trivial; yaitu jika a1,a2,...,an adalah skalar sehingga
jika dan hanya jika ai = 0 untuk semua i = 1, 2, ..., n.
Pranala luar
- Fungsi takbebas linear di WolframMathWorld