Baterai listrik
Baterai adalah perangkat yang terdiri dari satu atau lebih sel elektrokimia dengan koneksi eksternal yang disediakan untuk memberi daya pada perangkat listrik seperti senter, ponsel, dan mobil listrik.[1] Ketika baterai memasok daya listrik, terminal positifnya adalah katoda dan terminal negatifnya adalah anoda.[2] Terminal bertanda negatif adalah sumber elektron yang akan mengalir melalui rangkaian listrik eksternal ke terminal positif. Ketika baterai dihubungkan ke beban listrik eksternal, reaksi redoks mengubah reaktan berenergi tinggi ke produk berenergi lebih rendah, dan perbedaan energi-bebas dikirim ke sirkuit eksternal sebagai energi listrik.[3] Secara historis istilah "baterai" secara khusus mengacu pada perangkat yang terdiri dari beberapa sel, namun penggunaannya telah berkembang untuk memasukkan perangkat yang terdiri dari satu sel.[4]
Baterai primer (sekali pakai) digunakan satu kali kemudian dibuang; bahan elektroda berubah secara ireversibel selama pelepasan. Contoh umum adalah baterai alkaline yang digunakan untuk senter dan banyak perangkat elektronik portabel. Baterai sekunder (dapat diisi ulang) dapat habis dan diisi ulang beberapa kali menggunakan arus listrik yang diterapkan; komposisi asli dari elektroda dapat dikembalikan dengan arus balik. Contohnya termasuk baterai timbal-asam yang digunakan dalam kendaraan dan baterai ion-litium yang digunakan untuk elektronik portabel seperti laptop dan ponsel.
Kutub yang bertanda positif menandakan bahwa memiliki energi potensial yang lebih tinggi daripada kutub bertanda negatif. Kutub bertanda negatif adalah sumber elektron yang ketika disambungkan dengan rangkaian eksternal akan mengalir dan memberikan energi ke peralatan eksternal. Ketika baterai dihubungkan dengan rangkaian eksternal, elektrolit dapat berpindah sebagai ion didalamnya, sehingga terjadi reaksi kimia pada kedua kutubnya. Perpindahan ion dalam baterai akan mengalirkan arus listrik keluar dari baterai sehingga menghasilkan kerja.[5] Meski sebutan baterai secara teknis adalah alat dengan beberapa sel, sel tunggal juga umumnya disebut baterai.
Baterai hadir dalam berbagai bentuk dan ukuran, dari sel miniatur yang digunakan untuk alat bantu dengar dan arloji hingga kecil, sel tipis yang digunakan dalam ponsel cerdas, hingga baterai asam timbal besar atau baterai litium-ion dalam kendaraan, dan pada ukuran paling besar, bank baterai besar seukuran ruangan yang menyediakan daya siaga atau darurat untuk pertukaran telepon dan pusat data komputer.
Menurut perkiraan di tahun 2005, industri baterai di seluruh dunia menghasilkan US$48 miliar dalam penjualan setiap tahun,[6] dengan pertumbuhan tahunan 6%.
Baterai memiliki energi spesifik yang jauh lebih rendah (energi per satuan massa) daripada bahan bakar umum seperti bensin. Pada mobil, ini sedikit diimbangi oleh efisiensi yang lebih tinggi dari motor listrik dalam mengubah energi kimia menjadi pekerjaan mekanik, dibandingkan dengan mesin pembakaran.
Prinsip operasi
Baterai mengubah energi kimia langsung menjadi energi listrik. Baterai terdiri dari sejumlah sel volta. Tiap sel terdiri dari 2 sel setengah yang terhubung seri melalui elektrolit konduktif yang berisi anion dan kation. Satu sel setengah termasuk elektrolit dan elektroda negatif, elektroda yang di mana anion berpindah; sel-setengah lainnya termasuk elektrolit dan elektroda positif di mana kation berpindah. Reaksi redoks akan mengisi ulang baterai. Kation akan tereduksi (elektron akan bertambah) di katoda ketika pengisian, sedangkan anion akan teroksidasi (elektron hilang) di anoda ketika pengisian.[7] Ketika digunakan, proses ini dibalik. Elektrodanya tidak bersentuhan satu sama lain, tetapi terhubung via elektrolit. Beberapa sel menggunakan elektrolit yang berbeda untuk tiap sel setengah. Sebuah separator dapat membuat ion mengalir di antara sel-setengah dan bisa menghindari pencampuran elektrolit.
Tiap sel setengah memiliki gaya gerak listrik (GGL), ditentukan dari kemampuannya untuk menggerakan arus listrik dari dalam ke luar sel. GGL bersih sebuah sel adalah perbedaan GGL masing-masing sel setengah.[8] Maka, jika elektroda memiliki GGL dan , maka GGL bersihnya adalah . Dengan kata lain, GGL bersih adalah perbedaan antara potensial reduksi reaksi setengah.[9]
Perbedaan potensial pada kutub baterai dikenal dengan (perbedaan) tegangan kutub dan diukur dalam volt.[10] Tegangan kutub sebuah sel yang tidak sedang diisi ulang atau dipakai disebut tegangan rangkaian-terbuka dan sama dengan GGL sel. Karena adanya resistensi dalam,[11] tegangan kutub pada sel yang dipakai lebih kecil daripada tegangan rangkaian terbuka dan ketika sel diisi ulang, akan lebih besar daripada tegangan rangkaian terbuka.[12]
Sebuah sel ideal memiliki resistensi dalam yang dapat diabaikan, maka sel tersebut akan menjaga tegangan terminal konstan sebesar sampai habis, kemudian turun menjadi nol. Jika sel menjaga 1,5 volt dan menyimpan muatan satu coulomb maka pada pelepasan total akan menghasilkan 1,5 joule kerja.[10] Pada sel sebenarnya, resistensi dalam akan meningkat ketika melepas muatan (discharge)[11] dan tegangan rangkaian terbuka juga menurun ketika melepas muatan. Jika tegangan dan hambatan diplot terhadap waktu, maka grafiknya biasanya berbentuk kurva.
Tegangan yang muncul melewati kutub sel tergantung dari energi yang dilepas dari reaksi kimia pada elektroda dan elektrolit. Sel baterai alkaline dan baterai seng-karbon memiliki sifat kimia yang berbeda, tetapi menghasilkan GGL yang sama berkisar 1,5 volt. Begitu juga sel NiCd dan NiMH memiliki sifat kimia yang berbeda namun menghasilkan GGL sama sekitar 1.2 volt.[13]
Besar energi yang dapat disimpan baterai dipengaruhi oleh dua hal, yaitu tegangan baterai yang bersatuan volt dan kapasitas baterai yang bersatuan Ah. Energi yang disimpan (Wh) = Tegangan baterai (V) x Kapasitas baterai (Ah).
Tegangan baterai sendiri secara teoretik hanya dipengaruhi oleh tipe materialnya. Misal, pada baterai zink klorida, tidak peduli berapapun ukuran baterai, tegangannya ialah 2,12 V[14]. Lalu, kapasitas baterai dipengaruhi oleh ukuran baterai, atau lebih akurat adalah massa material aktif/elektroda yang ada di baterai tersebut.
Namun begitu, secara praktikal besar energi spesifik (energi/gram) yang dapat disimpan jauh lebih rendah daripada teoretik. Hal ini disebabkan terdapat komponen-komponen dalam baterai yang menambah berat baterai yaitu elektrolit, separator, current collector, kontainer, terminal, seal, dll.
Lalu, terdapat faktor seperti voltage drop yang terjadi karena tiga hal. Yang pertama adalah terdapat hambatan dalam baterai yang disebabkan oleh hambatan ionik dari elektrolit dan juga hambatan elektronik dari komponen aktif baterai. Yang kedua adalah adanya activation polarization, yaitu polarisasi yang terjadi karena reaksi elektrokimia pada permukaan elektroda. Yang ketiga adalah concentration polarization, yaitu polarisasi yang terjadi karena perbedaan konsentrasi reaktan dengan produk pada elektroda yang disebabkan oleh transfer muatan.
Hingga saat ini, baterai sekunder atau isi ulang yang paling umum digunakan di handphone, laptop, maupun mobil listrik ialah baterai litium ion dengan elektrolit cair berupa LiPF6. Elektrolit tersebut sebenarnya memiliki tingkat keamanan yang relatif rendah dibanding karena sifatnya yang mudah bereaksi dengan udara dan terbakar.
Oleh karena itu, saat ini sedang dikembangkan elektrolit padat yang memiliki tingkat keamanan lebih tinggi. Sayangnya, konduktivitas ionik elektrolit padat masih secara umum di bawah elektrolit cair. Dengan begitu, hambatan dalam yang akan dimiliki oleh baterai dengan elektrolit padat secara umum lebih besar dan voltage drop yang akan terjadi juga semakin besar.
Orang/ penemu
- John Frederic Daniell
- Thomas Edison
- Luigi Galvani
- Moritz von Jacobi
- Georges Leclanché
- Slavoljub Penkala
- Nikola Tesla
- Alessandro Volta
Topik listrik terkait
- Perbedaan potensial
- Kendaraan listrik
- Efisiensi listrik
- Listrik
- Sel elektrokimiawi
- Potensial elektrokimiawi
- Elektrokimia
- Gaya elektromotif
- Electroplating
- Penyimpanan energi
- Baterai lokal
- Power supply
- Direct current
- Tenaga surya
- Energi terbarui
Konsep elektronik terkait
- Rangkaian seri dan paralel
- Sel sekunder
- Elektroda
- Kapasitor elektrolitik
- Fuel cell
- Galvanic cell
- Ignition system
- Lemon battery
- Jump start
- Lantern
- Flywheel energy storage
- Rechargeable battery
- Maximum power theorem
- Persamaan Nernst
- Superconducting magnetic energy storage
- Grid energy storage
Penemuan terkait
- Baghdad Battery
- Voltaic pile
- Timeline of invention
- Daftar penemu
- Smart Battery Data baterai memperingatkan alat kalau akan habis.
Lainnya
Referensi
- ^ Crompton, T.R. (2000-03-20). Battery Reference Book (edisi ke-third). Newnes. hlm. Glossary 3. ISBN 978-0-08-049995-6. Diakses tanggal 2016-03-18.
- ^ Pauling, Linus (1988). "15: Oxidation-Reduction Reactions; Electrolysis.". General Chemistry. New York: Dover Publications, Inc. hlm. 539. ISBN 978-0-486-65622-9.
- ^ Schmidt-Rohr, Klaus (2018). "How Batteries Store and Release Energy: Explaining Basic Electrochemistry". Journal of Chemical Education. 95 (10): 1801–1810. Bibcode:2018JChEd..95.1801S. doi:10.1021/acs.jchemed.8b00479.
- ^ Pistoia, Gianfranco (2005-01-25). Batteries for Portable Devices. Elsevier. hlm. 1. ISBN 978-0-08-045556-3. Diakses tanggal 2016-03-18.
- ^ "Battery - Definition of battery by Merriam-Webster". merriam-webster.com.
- ^ Power Shift: DFJ on the lookout for more power source investments Diarsipkan 1 December 2005 di Wayback Machine..Draper Fisher Jurvetson. Retrieved 20 November 2005.
- ^ Dingrando 665.
- ^ Saslow 338.
- ^ Dingrando 666.
- ^ a b Knight 943.
- ^ a b Knight 976.
- ^ Terminal Voltage – Tiscali Reference. Originally from Hutchinson Encyclopaedia. Retrieved 7 April 2007.
- ^ Dingrando 674.
- ^ "Energy Data Conversion Handbook". 1984. doi:10.1007/978-1-349-07397-9.
Pranala luar
- Electrochemistry Encyclopedia NONRECHARGEABLE BATTERIES
- Battery Glossary & Terminology
- Battery Technologies - Directory page covering theory, research and development, and market devices that improve the trend toward clean, renewable energy. (FreeEnergyNews)
- Jet-Powered Computers, a look at future battery technologies by Fred Hapgood
- The Microturbine, battery technology as "the Next Big Thing" by Fred Hapgood
- Exide Technologies, a typical manufacturer of batteries for industrial and other applications
- Batteries in a Portable World - A Handbook on rechargeable batteries for non-engineers - Has a comprehensive FAQ section on rechargeable batteries
- Battery Timeline - History of batteries, energy and related technologies
- Mobile phone fuel cells coming in 2007 Infoworld July 13, 2005
- "Battery Resources" of PESWiki, the community-built website dealing with alternative and renewable energy solutions