Pecahan berlanjut
Dalam matematika, pecahan berlanjut adalah sebuah ekspresi yang didapat melalui proses iteratif mewakili bilangan sebagai jawaban dari bagian integernya.[1] Integer disebut koefisien dari pecahan berlanjut.[2]
Motivasi dan notasi
Rumus dasar
Menghitung representasi pecahan berlanjut
Notasi
Pecahan lanjutan hingga
Dari timbal balik
Pecahan dan konvergensi yang tak terbatas
Semikonvergensi
Pendekatan rasional terbaik
Perbandingan
Ekspansi pecahan lanjutan dari π
Fraksi lanjutan digeneralisasi
Ekspansi fraksi lanjutan lainnya
Aplikasi
Contoh bilangan rasional dan irasional
Sejarah
Catatan
- ^ "Continued fraction - mathematics".
- ^ (Pettofrezzo & Byrkit 1970, hlm. 150)
Referensi
- Siebeck, H. (1846). "Ueber periodische Kettenbrüche". J. Reine Angew. Math. 33. hlm. 68–70.
- Heilermann, J. B. H. (1846). "Ueber die Verwandlung von Reihen in Kettenbrüche". J. Reine Angew. Math. 33. hlm. 174–188.
- Magnus, Arne (1962). "Continued fractions associated with the Padé Table". Math. Z. 78. hlm. 361–374.
- Chen, Chen-Fan; Shieh, Leang-San (1969). "Continued fraction inversion by Routh's Algorithm". IEEE Trans. Circuit Theory. 16 (2). hlm. 197–202. doi:10.1109/TCT.1969.1082925.
- Gragg, William B. (1974). "Matrix interpretations and applications of the continued fraction algorithm". Rocky Mount. J. Math. 4 (2). hlm. 213. doi:10.1216/RJM-1974-4-2-213.
- Jones, William B.; Thron, W. J. (1980). Continued Fractions: Analytic Theory and Applications. Encyclopedia of Mathematics and its Applications. 11. Reading. Massachusetts: Addison-Wesley Publishing Company. ISBN 0-201-13510-8.
- Khinchin, A. Ya. (1964) [Originally published in Russian, 1935]. Continued Fractions. University of Chicago Press. ISBN 0-486-69630-8.
- Long, Calvin T. (1972), Elementary Introduction to Number Theory (edisi ke-2nd), Lexington: D. C. Heath and Company, LCCN 77-171950
- Perron, Oskar (1950). Die Lehre von den Kettenbrüchen. New York, NY: Chelsea Publishing Company.
- Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970), Elements of Number Theory, Englewood Cliffs: Prentice Hall, LCCN 77-81766
- Rockett, Andrew M.; Szüsz, Peter (1992). Continued Fractions. World Scientific Press. ISBN 981-02-1047-7.
- H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Company, Inc., 1948 ISBN 0-8284-0207-8
- Cuyt, A.; Brevik Petersen, V.; Verdonk, B.; Waadeland, H.; Jones, W. B. (2008). Handbook of Continued fractions for Special functions. Springer Verlag. ISBN 978-1-4020-6948-2.
- Rieger, G. J. (1982). "A new approach to the real numbers (motivated by continued fractions)". Abh. Braunschweig.Wiss. Ges. 33. hlm. 205–217.
Pranala luar
- Hazewinkel, Michiel, ed. (2001) [1994], "Continued fraction", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
- An Introduction to the Continued Fraction
- Linas Vepstas Continued Fractions and Gaps (2004) reviews chaotic structures in continued fractions.
- Continued Fractions on the Stern-Brocot Tree at cut-the-knot
- The Antikythera Mechanism I: Gear ratios and continued fractions
- Continued fraction calculator, WIMS.
- Continued Fraction Arithmetic Gosper's first continued fractions paper, unpublished. Cached on the Internet Archive's Wayback Machine
- (Inggris) Weisstein, Eric W. "Continued Fraction". MathWorld.
- Continued Fractions by Stephen Wolfram and Continued Fraction Approximations of the Tangent Function by Michael Trott, Wolfram Demonstrations Project.
- Templat:OEIS el
- A view into "fractional interpolation" of a continued fraction {1; 1, 1, 1, ...}
- Best rational approximation through continued fractions
Lihat entri pecahan berlanjut di kamus bebas Wiktionary.