Dalam matematika, pecahan berlanjut adalah sebuah ekspresi yang didapat melalui proses iteratif mewakili bilangan sebagai jawaban dari bagian integernya.[1] Integer disebut koefisien dari pecahan berlanjut.[2]

Motivasi dan notasi

Rumus dasar

Menghitung representasi pecahan berlanjut

Notasi

Pecahan lanjutan hingga

Dari timbal balik

Pecahan dan konvergensi yang tak terbatas

Semikonvergensi

Pendekatan rasional terbaik

Perbandingan

Ekspansi pecahan lanjutan dari π

Fraksi lanjutan digeneralisasi

Ekspansi fraksi lanjutan lainnya

Aplikasi

Contoh bilangan rasional dan irasional

Sejarah

Catatan

Referensi

  • Siebeck, H. (1846). "Ueber periodische Kettenbrüche". J. Reine Angew. Math. 33. hlm. 68–70. 
  • Heilermann, J. B. H. (1846). "Ueber die Verwandlung von Reihen in Kettenbrüche". J. Reine Angew. Math. 33. hlm. 174–188. 
  • Magnus, Arne (1962). "Continued fractions associated with the Padé Table". Math. Z. 78. hlm. 361–374. 
  • Chen, Chen-Fan; Shieh, Leang-San (1969). "Continued fraction inversion by Routh's Algorithm". IEEE Trans. Circuit Theory. 16 (2). hlm. 197–202. doi:10.1109/TCT.1969.1082925. 
  • Gragg, William B. (1974). "Matrix interpretations and applications of the continued fraction algorithm". Rocky Mount. J. Math. 4 (2). hlm. 213. doi:10.1216/RJM-1974-4-2-213. 
  • Jones, William B.; Thron, W. J. (1980). Continued Fractions: Analytic Theory and Applications. Encyclopedia of Mathematics and its Applications. 11. Reading. Massachusetts: Addison-Wesley Publishing Company. ISBN 0-201-13510-8. 
  • Khinchin, A. Ya. (1964) [Originally published in Russian, 1935]. Continued Fractions. University of Chicago Press. ISBN 0-486-69630-8. 
  • Long, Calvin T. (1972), Elementary Introduction to Number Theory (edisi ke-2nd), Lexington: D. C. Heath and Company, LCCN 77-171950 
  • Perron, Oskar (1950). Die Lehre von den Kettenbrüchen. New York, NY: Chelsea Publishing Company. 
  • Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970), Elements of Number Theory, Englewood Cliffs: Prentice Hall, LCCN 77-81766 
  • Rockett, Andrew M.; Szüsz, Peter (1992). Continued Fractions. World Scientific Press. ISBN 981-02-1047-7. 
  • H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Company, Inc., 1948 ISBN 0-8284-0207-8
  • Cuyt, A.; Brevik Petersen, V.; Verdonk, B.; Waadeland, H.; Jones, W. B. (2008). Handbook of Continued fractions for Special functions. Springer Verlag. ISBN 978-1-4020-6948-2. 
  • Rieger, G. J. (1982). "A new approach to the real numbers (motivated by continued fractions)". Abh. Braunschweig.Wiss. Ges. 33. hlm. 205–217. 

Pranala luar