Kubus
Dalam geometri, Kubus[1] adalah bangun ruang tiga dimensi yang dibatasi oleh enam bidang sisi yang kongruen berbentuk bujur sangkar. Kubus memiliki 6 sisi, 12 rusuk, dan 8 titik sudut. Kubus juga disebut dengan Bidang enam beraturan, selain itu kubus juga merupakan bentuk khusus dalam prisma segi empat, Kubus.
Kubus | |
---|---|
Jenis | Padat platonis |
Muka | 6 |
Rusuk | 12 |
titik sudut | 8 |
Konfigurasi titik sudut | V 3.3.3.3 |
Simbol Wythoff | 3 |
Simbol Schläfli | {4,3} |
Diagram Coxeter | |
Grup simetri | Oh, B3, [4,3], (* 432) |
Sudut dihedral (derajat) | 90° |
Sifat-sifat | reguler, cembung zonohedron |
Jaring | |
Proyeksi ortogonal
Kubus memiliki empat khusus proyeksi orthogonal , berpusat, pada titik, tepi, wajah dan normal nya angka vertex . Yang pertama dan ketiga sesuai dengan Diagram Coxeter A2 dan B2
Dipusatkan oleh | Wajah | Vertex |
---|---|---|
Diagram Coxeter | B2 |
A2 |
Projective symmetry |
[4] | [6] |
Tilted views |
Ubin bulat
Kubus juga dapat direpresentasikan sebagai ubin bola, dan diproyeksikan ke pesawat melalui proyeksi stereografi. Proyeksi ini konformal, menjaga sudut tetapi bukan area atau panjang. Garis lurus pada bola diproyeksikan sebagai busur melingkar di pesawat.
Proyeksi ortografis | Proyeksi stereografi |
---|
Kordinat kartesius
Untuk sebuah kubus yang berpusat di titik asal, dengan tepi sejajar dengan sumbu dan dengan panjang tepi 2, koordinat kartesius dari simpul adalah
- (±1, ±1, ±1)
sedangkan interior terdiri dari semua titik (x0, x1, x2) with −1 < xi < 1 for all i.
Persmaan dalam
Dalam geometri analitik , permukaan kubus dengan pusat (x0, y0, z0) dan panjang tepi 2a adalah lokus semua titik (x, y, z) sedemikian rupa sehingga
Sebuah kubus juga dapat dianggap sebagai kasus pembatas superellipsoid 3D karena ketiga eksponen mendekati tak terhingga.
Rumus
Bila variabel S adalah panjang rusuk kubus, maka:
Luas permukaan
Volume
Diagonal sisi
Diagonal sisi seluruhnya
Diagonal ruang
Diagonal ruang seluruhnya
Luas bidang diagonal
Luas bidang diagonal seluruhnya
Tunjuk ruang
Untuk kubus yang bulatan pembatasnya memiliki jari-jari R, dan untuk titik tertentu dalam ruang 3-dimensi dengan jarak di dari delapan simpul kubus, kita memiliki:[2]
Menggadakan kubus
Menggandakan kubus, atau masalah Delian, adalah masalah yang ditimbulkan oleh ahli matematika Yunani kuno hanya menggunakan kompas dan penggaris-sejajar untuk memulai dengan panjang tepi kubus yang diberikan dan untuk membangun panjang tepi kubus dengan dua kali lipat. volume kubus asli. Mereka tidak dapat menyelesaikan masalah ini, dan pada tahun 1837 Pierre Wantzel membuktikannya tidak mungkin karena akar pangkat dua bukanlah angka yang dapat dibangun.
Pewarnaan dan simetri yang seragam
Kubus memiliki tiga warna yang seragam, dinamai dengan warna wajah persegi di sekitar setiap titik: 111, 112, 123.
Kubus memiliki empat kelas simetri, yang dapat diwakili oleh pewarnaan verteks-transitif wajah. Simetri oktahedral tertinggi Oh memiliki semua wajah dengan warna yang sama. Dihedral simetri D4h berasal dari kubus menjadi prisma, dengan keempat sisinya menjadi warna yang sama. Himpunan bagian prismatik D2d memiliki warna yang sama dengan yang sebelumnya dan D2h memiliki warna bergantian untuk sisinya dengan total tiga warna, dipasangkan oleh sisi yang berlawanan. Setiap bentuk simetri memiliki Simbol Wythoff yang berbeda.
Nama | Heksahedron biasa | Prisma persegi | Trapesium persegi panjang | Balok | Rhombic prisma |
Trigonal trapezohedron |
---|---|---|---|---|---|---|
Coxeter diagram |
||||||
Schläfli symbol |
{4,3} | {4}×{ } rr{4,2} |
s2{2,4} | { }3 tr{2,2} |
{ }×2{ } | |
Wythoff symbol |
3 | 4 2 | 4 2 | 2 | 2 2 2 | | |||
Symmetry | Oh [4,3] (*432) |
D4h [4,2] (*422) |
D2d [4,2+] (2*2) |
D2h [2,2] (*222) |
D3d [6,2+] (2*3) | |
Symmetry order |
24 | 16 | 8 | 8 | 12 | |
Image (uniform coloring) |
(111) |
(112) |
(112) |
(123) |
(112) |
(111), (112) |
Grafik
–⟩ Lihat pula:Paralelipiped
Kerangka kubus (simpul dan tepi) membentuk grafik , dengan 8 simpul, dan 12 tepi. Ini adalah kasus khusus dari grafik Kubushiper.[3] Ini adalah salah satu dari 5 grafik Platonis , masing-masing merupakan kerangka dari padatan Platoniknya.
Perpanjangan adalah grafik tiga dimensi k -ary Hamming , yang untuk k = 2 adalah grafik kubus. Grafik semacam ini muncul dalam teori pemrosesan paralel di komputer.
Referensi
- ^ Bahasa indonesia Kubus dari Bahasa prancis lama < Latin cubus < Greek κύβος (kubos) meaning "a cube, a die, vertebra". In turn from PIE *keu(b)-, "to bend, turn".
- ^ Park, Poo-Sung. "Regular polytope distances", Forum Geometricorum 16, 2016, 227-232. http://forumgeom.fau.edu/FG2016volume16/FG201627.pdf
- ^ (Inggris) Weisstein, Eric W. "Cubical graph". MathWorld.
Pranala luar
- Weisstein, Eric W. "Cube". MathWorld.
- Cube: Interactive Polyhedron Model
- Volume kubus, dengan animasi interaktif
- Cube (Situs Robert Webb)