Penambahan
Penambahan (disebut juga penjumlahan, sering ditandai dengan tanda plus "+") adalah salah satu dari empat operasi aritmetika dasar. Penjumlahan merupakan penambahan sekelompok bilangan atau lebih menjadi suatu bilangan yang disebut jumlah. Misalnya di gambar di samping, terdapat tiga apel di sisi kiri dan dua apel di sisi kanan, menghasilkan jumlah lima apel. Dalam simbol matematika, ini dilambangkan "3 + 2 = 5", disebut "3 ditambah 2 sama dengan 5".
Selain untuk menghitung jumlah benda, penambahan bisa didefinisikan dan digunakan untuk menghitung objek abstrak berupa bilangan, di antaranya bilangan bulat, bilangan real, dan bilangan kompleks. Dalam cabang matematika lain yang disebut aljabar, penambahan bisa digunakan untuk objek-objek abstrak lainnya seperti vektor dan matriks.
Penambahan memiliki beberapa sifat penting. Penambahan bersifat komutatif, yang berarti urutan bilangan yang ditambahkan tidak berpengaruh, dan bersifat asosiatif, yang berarti jika terdapat beberapa operasi penambahan maka urutan penambahan yang dikerjakan terlebih dahulu tidak berpengaruh. Menambahkan 0 tidak mengubah bilangan yang ditambah. Penambahan juga memiliki aturan-aturan yang terkait dengan operasi pengurangan dan perkalian.
Notasi dan terminologi
Penjumlahan ditulis menggunakan tanda plus "+" di antara suku-suku tersebut;[2][3] yaitu, dalam notasi infix. Hasilnya diekspresikan dengan tanda sama dengan. Sebagai contoh,
- ("satu tambah satu sama dengan dua")
- ("dua tambah dua sama dengan empat")
- ("satu tambah dua sama dengan tiga")
- (lihat "asosiatif" di bawah)
- (lihat "perkalian" di bawah)
Ada pula situasi dimana penambahan "dipahami", meskipun tidak ada simbol yang muncul:
- Bilangan bulat dengan pecahan menunjukkan jumlah keduanya, yang disebut bilangan campuran.[4] Sebagai contoh,
3½ = 3 + ½ = 3.5.
Notasi ini dapat membingungkan, karena sebagian besar konteks lain, juxtaposition menunjukkan perkalian sebagai gantinya.[5]
Jumlah dari sebuah deret dari bilangan terkait dapat diekspresikan melalui notasi sigma kapital yang secara kompak menunjukkan iterasi. Sebagai contoh,
Bilangan atau objek yang akan ditambahkan dalam penjumlahan umum secara kolektif disebut sebagai istilah,[6] tambahan[7][8][9] atau ringkasan;[10] terminologi ini dibawa ke penjumlahan beberapa istilah. Dibedakan dari faktor, yaitu perkalian. Beberapa penulis menyebut tambahan pertama sebagai augend.[7][8][9] Faktanya, selama Renaisans, banyak penulis tidak menganggap tambahan pertama sebagai "tambahan" sama sekali. Saat ini, karena sifat komutatif penjumlahan, "augend" jarang digunakan, dan kedua istilah tersebut umumnya disebut adend.[11]
Tanda plus "+" (Unicode:U+002B; ASCII: +
) adalah singkatan dari kata Latin et, yang berarti "dan".[13] Muncul dalam karya matematika yang berasal dari setidaknya 1489.[14]
Interpretasi
Penambahan digunakan untuk memodelkan banyak proses fisik. Bahkan untuk kasus sederhana penambahan bilangan asli, banyak kemungkinan interpretasi dan bahkan lebih banyak lagi representasi visual.
Himpunan gabungan
Interpretasi paling mendasar dari penjumlahan terletak pada himpunan gabungan:
- Ketika dua atau lebih koleksi terputus digabungkan menjadi satu koleksi, jumlah objek dalam satu koleksi adalah jumlah dari jumlah objek dalam koleksi asli.
Interpretasi ini mudah untuk divisualisasikan, dengan sedikit bahaya ambiguitas. Dalam matematika tingkat tinggi (untuk definisi ketat yang diilhaminya, lihat § Bilangan asli dibawah ini). Namun, tidak jelas bagaimana seseorang harus memperluas versi penjumlahan ini untuk memasukkan bilangan pecahan atau bilangan negatif.[15]
Salah satu perbaikan yang mungkin dilakukan adalah dengan mempertimbangkan koleksi objek dengan mudah dibagi, seperti pai atau lebih baik lagi, batang tersegmentasi.[16] Menggabungkan himpunan segmen, batang dapat digabungkan dari ujung ke ujung, yang menggambarkan konsep tambahan lainnya: menambahkan bukan batang tetapi panjang batang.
Ekstensi panjang
Interpretasi kedua tentang penjumlahan berawal dari panjang awal dengan panjang tertentu:
- Jika panjang asli panjang dengan jumlah tertentu, panjang akhirnya adalah jumlah dari panjang asli dan panjang.[17]
Jumlah a + b dapat diartikan sebagai operasi biner yang menggabungkan a dan b, dalam arti aljabar, dapat diartikan sebagai penambahan b lebih banyak unit ke a. Dibawah interpretasi terakhir, bagian dari penjumlahan a + b memainkan peran asimetri, dan operasi a + b sebagai operasi uner +b ke a.[18] Alih kedua adendemen a dan b, lebih tepat untuk a dari augend dalam kasus ini, karena a memainkan peran pasif. Tampilan uner berguna saat mendiskusikan pengurangan, karena setiap operasi penjumlahan uner memiliki operasi pengurangan uner terbalik, dan sebaliknya.
Sifat-sifat
Sifat komutatif
Penambahan bersifat komutatif, berarti urutan di mana dua bilangan ditambahkan tidak menjadi masalah, hasilnya akan tetap sama. Secara simbolis, jika x dan y adalah sembarang bilangan, maka
- .
Sifat asosiatif
Penambahan bersifat asosiatif, yang berarti dalam pernyataan yang hanya melibatkan penambahan tidak terpengaruh dengan urutan operasi. Misalkan untuk pernyataan , jika pernyataan tersebut diartikan sebagai maupun , hasilnya akan sama.
Akan tetapi, jika penambahan berada di dalam pernyataan yang melibatkan operasi lain, urutan operasi akan berpengaruh. Misalnya, jika suatu pernyataan berisi operasi penambahan dan perkalian, maka operasi perkalian harus dilakukan terlebih dahulu.
Sifat distributif
Penambahan bersifat distributif terhadap perkalian. Sifat ini bisa digambarkan dengan identitas berikut.
Elemen identitas
Ketika menambahkan nol dengan suatu bilangan apapun, hasilnya akan sama dengan bilangan tersebut; nol adalah elemen identitas dari penambahan. Dalam simbol matematika, untuk a apapun,
- a + 0 = 0 + a = a.
Hukum ini pertama dikenali dalam Brahmasphutasiddhanta dari Brahmagupta pada tahun 628, meskipin dia menulisnya sebagai tiga hukum terpisah, bergantung pada apakah a adalah bilangan negatif, positif, atau nol, dan dia menggunakan kata-kata bukannya simbol aljabar. Matematikawan India kemudian memperhalus konsepnya; pada sekitar tahun 830, Mahavira menulis, "nol menjadi nilai yang sama dengan nilai yang ditambahkan dengannya", corresponding to the unary statement 0 + a = a.[19]
Satuan
Untuk menambahkan kuantitas-kuantitas fisik dengan satuan, kuantitas-kuantitas tersebut harus memiliki satuan yang sama.[20] Contohnya, 24 meter ditambah 1 meter sama dengan 25 meter. Akan tetapi, jika air bervolume 500 mililiter ditambahkan air bervolume 3 liter, maka jumlah volume airnya adalah 3500 mililiter, karena 3 liter sama dengan 3000 mililiter. Sedangkan menambahkan 3 meter dengan 4 meter persegi tidaklah bermakna, karena kedua satuan tersebut tidak bisa dibandingkan. Pertimbangan-pertimbangan ini merupakan dasar dari analisis dimensi.
Penambahan bilangan
Untuk membuktikan sifat-sifat penambahan, penambahan harus didefinisikan pada suatu konteks terlebih dahulu. Penambahan awalnya didefinisikan untuk bilangan asli. Dalam teori himpunan, operasi penambahan lalu diperluas untuk himpunan bilangan lain yang mengandung bilangan asli, yaitu bilangan bulat, bilangan rasional, dan bilangan real.[21]
Bilangan asli
Ada dua cara populer untuk mendefinisikan jumlah dari dua bilangan asli a dan b. Jika bilangan asli didefinisikan sebagai kardinalitas dari himpunan hingga, (kardinalitas suatu himpunan adalah banyak unsur dalam himpunan tersebut), maka jumlah dua bilangan asli bisa didefinisikan sebagai berikut:
- Misalkan N(S) adalah lambang untuk kardinalitas himpunan S. Misalkan terdapat dua himpunan saling lepas A dan B, dengan N(A) = a dan N(B) = b. Maka a + b didefinisikan sebagai .[22]
Di sini, A ∪ B adalah gabungan dari A dan B.
Definisi populer lainnya bersifat rekursif:
- Misalkan n+ adalah lambang untuk penerus dari n, yaitu bilangan setelah n dalam himpunan bilangan asli, jadi 0+=1, 1+=2. Definisikan a + 0 = a. Definisikan jumlah secara umum menggunakan rekursi a + (b+) = (a + b)+. Jadi misalnya 1 + 1 = 1 + 0+ = (1 + 0)+ = 1+ = 2.[23]
Perumusan penambahan rekursif ini telah dikembangkan oleh Dedekind pada tahun 1854, dan dia kemudian mengembangkannya selama dekade-dekade berikutnya.[24] Dia membuktikan sifat asosiatif dan komutatifnya menggunakan induksi matematika.
Bilangan rasional (pecahan)
Penambahan bilangan rasional didefinisikan menggunakan penambahan dan perkalian bilangan asli.
- Definisikan
Contohnya, .
Penambahan pecahan lebih sederhana ketika penyebutnya sama; untuk kasus ini, tinggal dijumlahkan pembilangnya tanpa mengubah penyebutnya: , jadi .[25]
Bilangan kompleks
Penambahan bilangan kompleks didefinisikan dengan menjumlahkan bagian real dan menjumlahkan bagian imajiner.[26][27] Dengan simbol matematika:
Generalisasi
Ada banyak operasi biner yang bisa dianggap sebagai generalisasi dari penambahan. Bidang aljabar abstrak utamanya membahas mengenai operasi-operasi yang digeneralisasi, dan operasi-operasi seperti itu juga ada dalam teori himpunan dan teori kategori.
Aljabar abstrak
Vektor
Dalam aljabar linear, ruang vektor adalah struktur aljabar yang mengandung operasi penambahan antara dua vektor dan perkalian skalar suatu vektor. Contoh ruang vektor adalah himpunan semua pasangan terurut bilangan real; suatu pasangan terurut bilangan real (a,b) dianggap sebagai sebuah vektor dari titik nol ke titik (a,b). Jumlah dua vektor diperoleh dari menambahkan masing-masing koordinatnya:
Operasi penambahan ini penting sekali bagi mekanika klasik, di mana gaya ditafsirkan sebagai vektor.
Matriks
Penjumlahan matriks didefinisikan untuk dua matriks yang dimensinya sama. Jumlah dari dua matriks berukuran m × n A dan B, dilambangkan dengan A + B, adalah sebuah matriks m × n yang dihitung dengan menambahkan elemen-elemen yang bersesuaian:[28][29]
Contohnya:
Aritmetika modular
Dalam aritmetika modular, penambahan dua bilangan bulat hasilnya sama dengan bilangan bulat yang kongruen dengan jumlah kedua bilangan bulat tersebut.
Teori umum
Teori umum dari aljabar abstrak membolehkan "penambahan" diartikan sebagai operasi apapun pada himpunan yang bersifat asosiatif dan komutatif. Struktur aljabar dengan operasi penambahan seperti itu di antaranya adalah monoid komutatif dan grup abelian.
Produk dari urutan
Notasi pi kapital
Hasil kali rangkaian faktor dapat ditulis dengan simbol hasil kali, yang berasal dari huruf kapital (pi) di Alfabet Yunani (mirip seperti huruf kapital (sigma) digunakan dalam konteks penjumlahan).[30][31][32] Posisi unicode U + 220F (∏) berisi mesin terbang untuk menunjukkan produk seperti itu, berbeda dari U+03A0 (Π), huruf. Arti dari notasi ini diberikan oleh:
that is
Subskrip memberikan simbol untuk variabel terikat (i dalam kasus ini), yang disebut "indeks perkalian", bersama dengan batas bawahnya (1). Batas bawah dan atas adalah ekspresi yang menunjukkan bilangan bulat. Faktor produk diperoleh dengan mengambil ekspresi mengikuti operator produk, dengan nilai integer yang berurutan menggantikan indeks perkalian, mulai dari batas bawah dan ditambah 1 sampai (dan termasuk) batas atas. Sebagai contoh:
Secara umum, notasi didefinisikan sebagai
di mana m dan n adalah bilangan bulat atau ekspresi yang dievaluasi menjadi bilangan bulat. Dalam kasus dimana m = n, nilai produknya sama dengan nilai faktor tunggalnya xm; bila m > n, produknya adalah produk kosong yang nilainya 1 terlepas dari ekspresi faktornya.
Produk tak hingga
Seseorang juga dapat mempertimbangkan produk dari istilah yang sangat banyak; ini disebut produk tak terbatas. Secara notasi, ini terdiri dari mengganti n di atas dengan simbol tak hingga ∞. Hasil kali dari urutan tak hingga seperti itu didefinisikan sebagai batas dari hasil kali suku n pertama, karena n tumbuh tanpa batas. Itu adalah,
Seseorang juga dapat mengganti m dengan tak terhingga negatif, dan mendefinisikan:
asalkan kedua batasan itu ada.
Aksioma
Dalam buku Arithmetices principal, nova methodo exposita , Giuseppe Peano mengajukan aksioma untuk aritmatika berdasarkan aksioma-nya untuk bilangan asli.[33] Aritmatike peano memiliki dua aksioma untuk perkalian:
Di sini S ( y ) mewakili penerus dari y , atau bilangan asli yang mengikuti y . Berbagai sifat seperti asosiatif dapat dibuktikan dari ini dan aksioma aritmatika Peano lainnya termasuk induksi. Misalnya S (0), dilambangkan dengan 1, adalah identitas perkalian karena
Aksioma untuk bilangan bulat biasanya mendefinisikannya sebagai kelas ekivalen dari pasangan bilangan asli yang terurut. Modelnya didasarkan pada perawatan (x,y) setara dengan x − y jika x dan y diperlakukan sebagai bilangan bulat. Jadi baik (0,1) dan (1,2) sama dengan −1. Aksioma perkalian untuk bilangan bulat didefinisikan dengan cara ini
Aturan yang −1 × −1 = 1 dapat disimpulkan
Perkalian diperluas dengan cara yang mirip dengan bilangan rasional dan kemudian ke bilangan riil.
Perkalian dengan teori himpunan
Hasil perkalian bilangan bulat bukan negatif dapat ditentukan dengan teori himpunan menggunakan bilangan pokok atau Aksioma Peano. Lihat di bawah bagaimana cara mengalikan bilangan bulat sembarangan, lalu bilangan rasional sembarang. Produk dari bilangan riil didefinisikan dalam hal produk dari bilangan rasional, lihat konstruksi bilangan riil.
Lihat pula
Referensi
- ^ From Enderton (p.138): "...select two sets K and L with card K = 2 and card L = 3. Sets of fingers are handy; sets of apples are preferred by textbooks."
- ^ Kesalahan pengutipan: Tag
<ref>
tidak sah; tidak ditemukan teks untuk ref bernama:0
- ^ "Addition". www.mathsisfun.com. Diakses tanggal 2020-08-25.
- ^ Devine et al. p. 263
- ^ Mazur, Joseph. Enlightening Symbols: A Short History of Mathematical Notation and Its Hidden Powers. Princeton University Press, 2014. p. 161
- ^ Department of the Army (1961) Army Technical Manual TM 11-684: Principles and Applications of Mathematics for Communications-Electronics. Bagian 5.1
- ^ a b Shmerko, V.P.; Yanushkevich [Ânuškevič], Svetlana N. [Svitlana N.]; Lyshevski, S.E. (2009). Computer arithmetics for nanoelectronics. CRC Press. hlm. 80.
- ^ a b Schmid, Hermann (1974). Decimal Computation (edisi ke-1st). Binghamton, NY: John Wiley & Sons. ISBN 0-471-76180-X. and Schmid, Hermann (1983) [1974]. Decimal Computation (edisi ke-reprint of 1st). Malabar, FL: Robert E. Krieger Publishing Company. ISBN 978-0-89874-318-0.
- ^ a b Weisstein, Eric W. "Addition". mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2020-08-25.
- ^ Hosch, W.L. (Ed.). (2010). The Britannica Guide to Numbers and Measurement. The Rosen Publishing Group. p. 38
- ^ Schwartzman p. 19
- ^ Karpinski pp. 56–57, reproduced on p. 104
- ^ Cajori, Florian (1928). "Asal dan arti dari tanda + dan -". A History of Mathematical Notations, Vol. 1. The Open Court Company, Publishers.
- ^ "plus" . Oxford English Dictionary (edisi ke-Online). Oxford University Press. Templat:OEDsub
- ^ Lihat Viro 2001 untuk contoh kecanggihan yang terlibat dalam penjumlahan dengan himpunan "kardinalitas pecahan".
- ^ Menambahkannya (p. 73) membandingkan menambahkan batang pengukur dengan menambahkan himpunan kucing: "Misalnya, inci dapat dibagi lagi menjadi beberapa bagian, yang sulit dibedakan dari keseluruhan, kecuali bahwa inci lebih pendek; sedangkan bagi kucing untuk membaginya menjadi beberapa bagian, dan itu sangat mengubah sifat mereka."
- ^ Mosley, F. (2001). Using number lines with 5–8 year olds. Nelson Thornes. p. 8
- ^ Li, Y., & Lappan, G. (2014). Mathematics curriculum in school education. Springer. p. 204
- ^ Kaplan pp. 69–71
- ^ R. Fierro (2012) Mathematics for Elementary School Teachers. Cengage Learning. Sec 2.3
- ^ Enderton chapters 4 and 5, sebagai contoh, mengikuti pengembangan ini.
- ^ Begle p. 49, Johnson p. 120, Devine et al. p. 75
- ^ Enderton p. 79
- ^ Ferreirós p. 223
- ^ Schyrlet Cameron, and Carolyn Craig (2013)Adding and Subtracting Fractions, Grades 5–8 Mark Twain, Inc.
- ^ Conway, John B. (1986), Functions of One Complex Variable I, Springer, ISBN 978-0-387-90328-6
- ^ Joshi, Kapil D (1989), Foundations of Discrete Mathematics, New York: John Wiley & Sons, ISBN 978-0-470-21152-6
- ^ Lipschutz, S., & Lipson, M. (2001). Schaum's outline of theory and problems of linear algebra. Erlangga.
- ^ Riley, K.F.; Hobson, M.P.; Bence, S.J. (2010). Mathematical methods for physics and engineering . Cambridge University Press. ISBN 978-0-521-86153-3.
- ^ "Comprehensive List of Algebra Symbols". Math Vault (dalam bahasa Inggris). 2020-03-25. Diakses tanggal 2020-08-16.
- ^ Weisstein, Eric W. "Product". mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2020-08-16.
- ^ "Summation and Product Notation". math.illinoisstate.edu. Diakses tanggal 2020-08-16.
- ^ "Peano arithmetic". PlanetMath. Diarsipkan dari versi asli tanggal 2007-08-19. Diakses tanggal 2007-06-03.