Faktor persekutuan terbesar

Dalam matematika, khususnya teori bilangan, faktor persekutuan terbesar atau dikenal juga sebagai persekutuan bilangan terbesar (dilambangkan [1] atau [2] dalam bahasa Indonesia, dan dalam bahasa Inggris, abreviasi dari kata greatest common divisor[3]) terhadap dua bilangan adalah bilangan bulat terbesar yang membagi setiap bilangan bulat. Sebagai contoh, diberikan bilangan bulat dan . Maka, . Mengenai cara-cara dan metode akan dijelaskan di bawah.

Gagasan faktor persekutuan terbesar dapat diperluas melalui polinomial, lihat faktor persekutuan terbesar polinomial atau persekutuan bilangan terbesar polinomial untuk melihat lebih lanjut.

Dua buah bilangan dikatakan saling prima jika dan hanya jika FPB dari kedua bilangan tersebut bernilai 1.

Notasi

Untuk   dan   bilangan bulat sembarang, notasi faktor persekutuan terbesar dinotasikan sebagai   atau  . Dalam versi bahasa Inggris, dinotasikan sebagai   atau  . Ada beberapa penulisan notasi faktor persekutuan terbesar, yaitu   atau  .[4]

Definisi

Misalkan   dan   adalah dua bilangan bulat yang diberikan. Misalkan   membagi   dan   dan   bilangan asli, maka faktor persekutuan bilangan terbesar terhadap bilangan bulat   dan   adalah[5]

 

Contoh

Terdapat cara sederhana mengenai pencarian suatu faktor persekutuan terbesar terhadap dua bilangan. Sebagai contoh, kita ambil contoh bilangan bulat di atas sebelumnya, yakni   dan  . Untuk mengetahui mengapa  , kita perhatikan faktor-faktor dari kedua bilangan di bawah ini.

  • Faktor dari   adalah  
  • Faktor dari   adalah  

Karena faktor persekutuan terbesar dua bilangan adalah bilangan bulat terbesar yang membagi setiap bilangan bulat, maka kita simpulkan  . Terdapat cara lain untuk mengerjakan ini.

Pohon faktor

Sebagai contoh, tinjau kedua bilangan di atas. Kita buatkan pohon faktor dari masing-masing bilangan:

             12         20
             /\         /\
            3  4       2  10
              /\          /\
             2  2        2  5

Kita memperoleh   dan  , maka,  , di mana hasilnya adalah  .

Algoritme Euklidean

Cara lain untuk mencari FPB adalah dengan menggunakan algoritme Euklidean. Misalkan a dan b adalah 2 bilangan bulat yang tidak sama, maka algoritme Euklidean adalah sebagai berikut:

  • a1 = maximum(a,b)-minimum(a,b)
b1 = minimum(a,b)
  • a2 = maximum(a1,b1)-minimum(a1,b1)
b2 = minimum(a1,b1)
.
.
.
  • ai = maximum(ai-1,bi-1)-minimum(ai-1,bi-1)
bi = minimum(ai-1,bi-1)

Algoritme tersebut berhenti hingga diperoleh ai = bi.

FPB dari a dan b adalah ai = bi.

Algoritme ini dapat lebih jauh disederhanakan lagi dengan pembagian Euklidean, yang dideskripsikan sebagai berikut:

 

 

dengan   adalah operasi modulus.

Pencarian algoritme Euklid dengan pembagian memerlukan sekitar   pembagian.

Lihat pula

Rujukan

  1. ^ Itsnaini, Faqihah Muharroroh. "Apa Perbedaan KPK dan FPB? Ini Penjelasannya". detikedu. Diakses tanggal 2021-11-14. 
  2. ^ Suci Yuniati, MENENTUKAN KELIPATAN PERSEKUTUAN TERKECIL (KPK) DAN FAKTOR PERSEKUTUAN TERBESAR (FPB) DENGAN MENGGUNAKAN METODE “PEBI”, hlm. 158
  3. ^ "Definition of greatest common divisor | Dictionary.com". www.dictionary.com (dalam bahasa Inggris). Diakses tanggal 2021-11-14. 
  4. ^ Weisstein, Eric W. "Greatest Common Divisor". mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2021-11-20. 
  5. ^ "8.1: The Greatest Common Divisor". Mathematics LibreTexts (dalam bahasa Inggris). 2017-09-20. Diakses tanggal 2021-11-21.