Persamaan roket Tsiolkovsky

Revisi sejak 19 Juni 2022 20.03 oleh Fardhan Arief (bicara | kontrib) (←Membuat halaman berisi ''''Persamaan roket Tsiolkovsky''', '''persamaan roket klasik''', atau '''persamaan roket ideal''' adalah persamaan rumus matematis yang menggambarkan gerak kendaraan yang mengikuti prinsip dasar roket: sebuah alat yang dapat melakukan percepatan pada dirinya sendiri dengan menggunakan gaya dorong dengan cara mengeluarkan sebagian massanya dengan kecepatan tinggi. Kecepatan demikian dapat bergerak karena momentum|kekekalan momentu...')
(beda) ← Revisi sebelumnya | Revisi terkini (beda) | Revisi selanjutnya → (beda)

Persamaan roket Tsiolkovsky, persamaan roket klasik, atau persamaan roket ideal adalah persamaan rumus matematis yang menggambarkan gerak kendaraan yang mengikuti prinsip dasar roket: sebuah alat yang dapat melakukan percepatan pada dirinya sendiri dengan menggunakan gaya dorong dengan cara mengeluarkan sebagian massanya dengan kecepatan tinggi. Kecepatan demikian dapat bergerak karena kekekalan momentum. Persamaan ini merupakan persamaan dasar astronotika menghubungkan peningkatan kecepatan selama fase propulsi pesawat ruang angkasa yang dilengkapi dengan mesin roket dengan rasio massa awalnya dengan massa akhirnya. di mana:

  • adalah delta-v – perubahan velocity kecepatan maksimum kendaraan (tanpa gaya eksternal yang bekerja).
  • adalah massa total awal, termasuk propelan, alias massa basah.
  • adalah massa total akhir tanpa propelan, alias massa kering.
  • adalah effective exhaust velocity kecepatan buang efektif, dimana:
  • adalah fungsi logaritma natural.

Mengingat kecepatan keluaran exhaust efektif (ditentukan oleh desain motor roket), delta-v yang diinginkan (misalnya, kecepatan lepas), dan massa kering tertentu , persamaan tersebut dapat digunakan untuk mencari massa basah yang dibutuhkan : Jadi massa basah yang diperlukan tumbuh secara eksponensial dengan delta-v yang diinginkan, seperti yang diilustrasikan pada grafik di atas.

Persamaan ini dinamai ilmuwan Rusia Konstantin Tsiolkovsky (Rusia:онстантин олковский) yang secara independen menurunkannya dan menerbitkannya dalam karyanya tahun 1903.[1][2]

Persamaan telah diturunkan sebelumnya oleh matematikawan Inggris William Moore pada tahun 1810, dan kemudian diterbitkan dalam buku terpisah pada tahun 1813.[3][4]

Robert Goddard di AS secara mandiri mengembangkan persamaan tersebut pada tahun 1912 ketika ia memulai penelitiannya untuk meningkatkan mesin roket untuk kemungkinan penerbangan luar angkasa. Hermann Oberth di Eropa secara independen menurunkan persamaan sekitar tahun 1920 saat ia mempelajari kelayakan perjalanan ruang angkasa.

Sementara derivasi turunan persamaan roket adalah latihan kalkulus langsung, Tsiolkovsky dihormati sebagai orang pertama yang menerapkannya pada pertanyaan apakah roket dapat mencapai kecepatan yang diperlukan untuk perjalanan ruang angkasa.

Referensi

  1. ^ К. Ціолковскій, Изслѣдованіе мировыхъ пространствъ реактивными приборами, 1903 (available online here Diarsipkan 2011-08-15 di Wayback Machine. in a RARed PDF)
  2. ^ Tsiolkovsky, K. "Reactive Flying Machines" (PDF). 
  3. ^ Moore, William (1810). "On the Motion of Rockets both in Nonresisting and Resisting Mediums". Journal of Natural Philosophy, Chemistry & the Arts. 27: 276–285. 
  4. ^ Moore, William (1813). A Treatise on the Motion of Rockets: to which is added, an Essay on Naval Gunnery, in theory and practice, etc (dalam bahasa Inggris). G. & S. Robinson.