0 (angka)
Halaman ini sedang dipersiapkan dan dikembangkan sehingga mungkin terjadi perubahan besar. Anda dapat membantu dalam penyuntingan halaman ini. Halaman ini terakhir disunting oleh Kekavigi (Kontrib • Log) 43 hari 165 menit lalu. Jika Anda melihat halaman ini tidak disunting dalam beberapa hari, mohon hapus templat ini. |
0 (nol atau sifar) adalah bilangan yang digunakan untuk mewakili suatu besaran yang kosong. Menambahkan 0 ke sebarang bilangan tidak akan mengubah bilangan tersebut. Dalam terminologi matematika, 0 adalah identitas penambahan dari bilangan bulat, bilangan rasional, bilangan riil, bilangan kompleks, dan banyak struktur aljabar lainnya. Mengalikan sebarang bilangan dengan 0 akan menghasilkan 0, dan sebagai akibatnya, pembagian oleh nol tidak memiliki makna dalam aritmetika.
| ||||
---|---|---|---|---|
Kardinal | 0 kosong oh nil nol nihil | |||
Ordinal | ke-0 (kenol) | |||
Faktorisasi | ||||
Pembagi | semua bilangan lain | |||
Romawi (unicode) | tidak ada | |||
Biner | 02 | |||
Ternari | 03 | |||
Kuaternari | 04 | |||
Quinary | 05 | |||
Senary | 06 | |||
Oktal | 08 | |||
Duodesimal | 012 | |||
Heksadesimal | 016 | |||
Vigesimal | 020 | |||
Basis 36 | 036 | |||
Arab | ٠,0 | |||
Urdu | ||||
Bengali | ০ | |||
Dewanagari | ० (shunya) | |||
Tionghoa | 零, 〇 | |||
Jepang | 零, 〇 | |||
Khmer | ០ | |||
Thai | ๐ |
Sebagai digit, 0 memainkan peran penting dalam notasi desimal, yakni untuk menyatakan perpangkatan bilangan sepuluh yang tidak digunakan dalam menentukan total. Sebagai contoh, "205" dalam desimal mengartikan dua ratus, tidak ada sepuluh, dan lima (bilangan) satu. Prinsip yang sama juga digunakan notasi-notasi nilai-tempat yang menggunakan basis selain sepuluh, seperti biner dan heksadesimal. Penggunaan bilangan 0 secara modern ini didasarkan dari matematika India yang disebarkan ke Eropa lewat para matematikawan Islam abad pertengahan dan dipopulerkan oleh Fibonacci. Konsep nol juga digunakan secara independen oleh peradaban Maya.
Sejarah
Timur Dekat Kuno
Angka Mesir kuno menggunakan basis 10,[1] dengan hieroglif digunakan untuk mewakili digit, tapi tidak menggunakan konsep posisional (nilai-tempat). Dalam satu papirus yang ditulis sekitar 1770SM dan berisi catatan pemasukan dan pengeluaran harian dari istana firaun, hieroglif nfr digunakan untuk menandakan keadaan jumlah bahan makanan yang diterima sama persis dengan jumlah yang dihabiskan. Seorang ahli Mesir, Alan Gardiner, berpendapat bahwa hieroglif nfr digunakan sebagai simbol untuk angka nol. Simbol yang sama juga digunakan untuk menunjukkan tingkat dasar dalam gambar makam-makam dan piramida-piramida; jarak diukur relatif terhadap tingkat dasar ini (berada di atas atau di bawah).[2]
Pada kisaran masa 1500 SM, matematika Babilonia memiliki sistem bilangan posisional basis 60 yang canggih. Tidak adanya nilai posisi (atau nol) ditunjukkan dengan adanya jarak di antara angka-angka seksagesimal. Sistem bilangan ini berbeda dengan sistem bilangan Hindu-Arab yang berkembang nantinya, dalam hal tidak dinyatakannya besaran (magnitudo) dari digit seksadesimal; jadi sebagai contoh, digit 1 ( ) tunggal dapat mewakili 1, 60, 3600 = 602, dst., dan hanya dapat dipahami secara tersirat dari konteks. penanda-tempat mirip-nol hanya digunakan diantara digit-digit, tapi tidak pernah digunakan sendirian atau diakhir dari suatu bilangan.[3]
Amerika pra-Kolombus
Kalender Hitung Panjang Mesoamerika yang dikembangkan di Meksiko bagian selatan-tengah dan Amerika Tengah, memerlukan penggunaan nol sebagai penanda-tempat dalam sistem angka posisional vigesimal (basis 20). Banyak glif, termasuk quatrefoil parsial digunakan sebagai simbol nol untuk tanggal Hitung Panjang, dengan yang paling lawas memiliki tanggal 36 SM (pada Stela 2 di Chiapa de Corzo, Chiapas).[a][4]
Karena delapan dari tanggal-tanggal Hitung Panjang terlawas terletak di luar daerah Maya,[5] umum dipercaya bahwa penggunaan nol di Amerika sudah ada sebelum Maya, dan mungkin penemuan dari Olmek.[6] Banyak tanggal Hitung Panjang masa awal berada di daerah Olmek, walaupun peradaban Olmek telah berakhir abad ke-4 SM,[7] beberapa abad sebelum tanggal-tanggal Hitung Panjang.[8]
Walau nol menjadi bagian penting dalam angka Maya, dengan simbol mirip batok bagian bawah kura-kura untuk mewakili angka nol, hal ini dianggap tidak mempengaruhi sistem-sistem bilangan di Dunia Lama.[butuh rujukan]
Quipu, suatu perangkat tali yang bersimpul, yang digunakan di Kekaisaran Inca dan masyarakat pendahulunya di wilayah Andes untuk mencatat akuntansi dan data lainnya, dikodekan dalam sistem posisi basis sepuluh. Nol diwakili oleh ketiadaan simpul pada posisi yang bersangkutan.[9]
Zaman Klasik
Peradaban Yunani Kuno tidak memiliki simbol maupun penanda-tempat digit untuk nol (μηδέν, dilafalkan midén).[10] Menurut matematikawan Charles Seife, bangsa Yunani Kuno baru mulai mengadopsi penanda-tempat nol versi Babilonia untuk menyelesaikan masalah terkait astronomi setelah 500 SM, yang diwakili dengan huruf kecil Yunani ό (όμικρον: omikron). Akan tetapi, setelah menggunakan penanda-tempat nol dalam perhitungan astronomi, mereka umumnya mengubah hasil kembali ke angka Yunani. Bangsa Yunani Kuno sepertinya memiliki penolakan filosofis untuk menggunakan nol sebagai bilangan.[11] Para ahli lain menetapkan tanggal yang lebih muda terkait adopsi parsial Yunani terhadap nol Babilonia, dengan ahli saraf Andreas Nieder menentukan setelah 400 SM, dan ahli matematika Robert Kaplan memberikan tanggal setelah perang Aleksander.[12][13]
Banga Yunani Kuno terlihat bimbang terkait status nol sebagai bilangan. Beberapa mempertanyakan, "Bagaimana yang tidak ada menjadi ada?", yang mengarah pada argumen-argumen filosofis, dan pada periode abad pertengahan, argumen-argumen religius terkait alam, keberadaan nol, dan ruang hampa. Paradoks-paradoks oleh Zeno dari Elea sebagian besar bergantung pada ketidakjelasan cara mengartikan nol.[14]
Pada tahun 150, Ptolemy menggunakan simbol untuk nol ()[15][16] dalam karyanya di astronomi matematika, Syntaxis Mathematica (juga dikenal sebagai Almagest). Ia mendapat pengaruh dari Hipparkhos dan bangsa Babilonia.[17] Nol Helenistik ini mungkin adalah catatan tertua penggunaan angka untuk mewakili nol di Dunia Lama.[18] Ptolemy banyak menggunakannya dalam buku Almagest-nya (VI.8), untuk menyatakan magnitudo dari gerhana bulan dan matahari. Simbol Ptolemy digunakan sebagai penanda-tempat sekaligus sebagai angka dalam dua fungsi matematika, jadi simbol ini mewakili nol, bukan kosong. Seiring waktu, simbol nol Ptolemy cenderung membesar dan kehilangan garis atas, sehingga terlihat seperti omikron besar "O" panjang mirip-0, atau sebagai omikron dengan garis atas "ō", ketimbang versi aslinya yang berupa titik dengan garis atas.[19]
Penggunaan nol tertua dalam perhitungan tanggal Paskah dilakukan sebelum tahun 311, pada entri pertama dalam tabel epak yang tersimpan dalam suatu dokumen Etiopia untuk tahun 311-369. Tabel ini menggunakan kata Ge'ez untuk "kosong" bersama dengan angka-angka Ge'ez (yang didasarkan pada angka Yunani), dan merupakan terjemahan dari tabel serupa yang diterbitkan oleh Gereja Aleksandria dalam bahasa Yunani Pertengahan.[20] Nol ini digunakan kembali tahun 525 dalam tabel serupa, yang diterjemahkan dari kata Latin nulla ("kosong") oleh Dionysius Exiguus, bersama dengan angka-angka Romawi.[21] Ketika pembagian tidak menghasilkan sisa, kata nihil (yang berarti tidak ada) digunakan. Nol abad pertengahan ini selanjutnya digunakan oleh para penghitung tanggal Paskah abad pertengahan. Awalan "N" digunakan sebagai simbol nol dalam suatu tabel angka Romai oleh Bede (atau koleganya) sekitar tahun 725.[22]
China
Sunzi Suanjing, yang diperkirakan berasal dari sekitar abad ke-1 sampai ke-5 Masehi), dan catatan-catatan Jepang dari abad ke-18, menjelaskan cara sistem tongkat penghitung China abad ke-4 SM memungkinkan penghitungan desimal. Seperti yang dicatat dalam Xiahou Yang Suanjing (425-468 M), untuk mengalikan (atau membagi) sebuah angka dengan 10, 100, 1000, atau 10,000, yang perlu dilakukan dengan tongkat-tongkat di papan hitung, adalah memindahkannya ke depan (atau ke belakang) sebanyak 1, 2, 3, atau 4 tempat.[24] Tongkat-tongkat tersebut memberikan representasi desimal dari sebuah angka, dengan ruang kosong yang mewakili nol.[25][26] Sistem tongkat penghitung adalah sistem notasi posisional.[27][28]
Nol tidak dianggap sebagai angka pada masa itu, tapi sebagai "posisi kosong".[29] Karya Qin Jiushao Risalah Matematika dalam Sembilan Bab tahun 1247 adalah teks matematika China tertua yang selamat, yang menggunakan simbol bulat 〇 untuk nol.[30] Asal usul dari simbol ini tidak jelas; mungkin dibawa dari India, atau dihasilkan dengan mengubah simbol persegi.[31] Risalah tersebut juga menunjukkan bahwa penulis-penulis China sudah familiar dengan konsep bilangan negatif pada masa dinasti Han (abad ke-2).[32]
India
Seorang cendekiawan sajak Sanskerta bernama Pingala (sekitar abad ke-3 atau ke-2 SM),[33][34] menggunakan barisan biner dalam bentuk suku kata pendek dan suku kata panjang (yang setara dengan dua suku kata pendek) untuk menentukan metrum Sanskerta yang valid; suatu notasi yang mirip dengan kode Morse.[35] Pingala menggunakan kata Sanskerta śūnya secara eksplisit untuk merujuk nol.[33]
Konsep nol sebagai angka dalam notasi nilai-tempat desimal dikembangkan di India.[36] Simbol nol berupa titik besar digunakan di keseluruhan manuskrip Bakhshali, suatu panduan praktis tentang aritmetika untuk para pedagang.[37] Pada tahun 2017, para peneliti di Bodleian Library melaporkan hasil penanggalan radiokarbon untuk tiga sampel dari manuskrip tersebut, dan mengindikasikan bahwa manuskrip tersebut berasal dari tiga abad yang berbeda: dari 224-383 Masehi, 680-779 Masehi, dan 885-993 Masehi. Tidak diketahui alasan fragmen-fragmen kulit kayu burja (birch) dari abad yang berbeda-beda dapat dikemas bersama untuk membentuk manuskrip tersebut. Jika tulisan pada fragmen-fragmen kulit kayu burja tertua sama tuanya dengan usia kulit kayu tersebut, ini menunjukkan penggunaan tertua yang tercatat dari simbol nol di Asia Selatan. Jika tulisan pada fragmen kulit kayu burja tertua sama tuanya dengan fragmen-fragmen tersebut, maka ini merupakan penggunaan simbol nol tertua yang tercatat di Asia Selatan. Namun, ada kemungkinan bahwa tulisan tersebut berasal dari periode waktu fragmen termuda, yaitu 885-993 Masehi. Penanggalan yang terakhir ini dianggap lebih konsisten dengan penggunaan nol yang canggih di dalam dokumen tersebut, karena beberapa bagian dari dokumen tersebut tampak menunjukkan bahwa nol digunakan sebagai angka, dan bukan hanya sebagai penanda posisi.[38][39][40]
Teks Jainisme tentang kosmologi Lokavibhāga yang ditulis tahun 458 M (era Saka 380) menggunakan sistem nilai-tempat desimal, termasuk nol. Dalam teks ini, śūnya ("hampa, kosong") juga digunakan untuk merujuk pada nol.[41]
Aturan terkait penggunaan nol muncul dalam Brahmasputha Siddhanta (abad ke-7) karya Brahmagupta, yang menyatakan bahwa penambahan nol dengan dirinya sendiri sama dengan nol, dan secara salah menjelaskan pembagian oleh nol sebagai berikut:[42][43]
Sebarang bilangan positif atau negatif ketika dibagi oleh nol menghasilkan suatu pecahan dengan nol sebagai penyebut. Nol dibagi dengan bilangan negatif atau positif menghasilkan antara nol atau dapat dituliskan sebagai pecahan dengan nol sebagai pembilang dan suatu besaran hingga sebagai penyebut. Nol dibagi dengan nol menghasilkan nol.
Epigrafi
Berdasarkan epigrafi, cabang ilmu arkeologi yang meneliti benda-benda tertulis masa lampau, titik hitam digunakan sebagai penanda-tempat desimal dalam manuskrip Bakhshali, yang sebagiannya tertanggal dari tahun 224–993 M.[44] Ada banyak prasasti lempengan tembaga dengan simbol o kecil yang sama, beberapa di antaranya mungkin berasal dari abad ke-6, tetapi tanggal atau keasliannya masih diragukan.[45]
Sebongkah lauh (inscription) batu ditemukan di reruntuhan kuil dekat Sambor di Mekong, Provinsi Kratié, Kamboja, memuat tulisan "605" dalam angka Khmer (seperangkat glif untuk sistem bilangan Hindu-Arab). Angka tersebut adalah tahun prasasti pada era Saka, yang setara dengan tanggal 683 M.[46][47]
Penggunaan glif khusus yang tak-terbantahkan untuk angka-angka desimal meliputi simbol untuk angka nol (berupa lingkaran kecil), muncul dalam lauh batu yang ditemukan di Kuil Chaturbhuj, Gwalior, di India, dengan bertanggal 876 Masehi.[48][49]
Abad Pertengahan
Penyebaran ke budaya Islam
...
Penyebaran ke Eropa
...
Simbol dan representasi
...
Matematika
...
Sains komputer
...
Bidang ilmu lainnya
...
Lihat pula
Pranala luar
Catatan kaki
- ^ No long count date actually using the number 0 has been found before the 3rd century AD, but since the long count system would make no sense without some placeholder, and since Mesoamerican glyphs do not typically leave empty spaces, these earlier dates are taken as indirect evidence that the concept of 0 already existed at the time.
Referensi
- ^ J J O'Connor; E F Robertson (2000). "Egyptian numerals". mathshistory.st-andrews.ac.uk. University of St Andrews. Diarsipkan dari versi asli tanggal 15 November 2019. Diakses tanggal 21 December 2019.
- ^ Lumpkin, Beatrice (2002). "Mathematics Used in Egyptian Construction and Bookkeeping". The Mathematical Intelligencer. 24 (2): 20–25. doi:10.1007/BF03024613.
- ^ Reimer 2014, hlm. 172.
- ^ "Cyclical views of time". www.mexicolore.co.uk. Diakses tanggal 2024-01-20.
- ^ Diehl (2004), hlm. 186.
- ^ Mortaigne, Véronique (28 November 2014). "The golden age of Mayan civilisation – exhibition review". The Guardian. Diarsipkan dari versi asli tanggal 28 November 2014. Diakses tanggal 10 October 2015.
- ^ Cyphers, Ann (2014), Renfrew, Colin; Bahn, Paul, ed., "The Olmec, 1800–400 bce", The Cambridge World Prehistory, Cambridge: Cambridge University Press, hlm. 1005–1025, ISBN 978-0-521-11993-1, diakses tanggal 2024-08-13
- ^ "Expedition Magazine | Time, Kingship, and the Maya Universe Maya Calendars". Expedition Magazine (dalam bahasa Inggris). Diakses tanggal 2024-08-13.
- ^ Leon, Manuel de (2022-12-20). "Knots representing numbers: The mathematics of the Incas". EL PAÍS English (dalam bahasa Inggris). Diakses tanggal 2024-06-05.
- ^ Wallin, Nils-Bertil (19 November 2002). "The History of Zero". YaleGlobal online. The Whitney and Betty Macmillan Center for International and Area Studies at Yale. Diarsipkan dari versi asli tanggal 25 August 2016. Diakses tanggal 1 September 2016.
- ^ Seife, Charles (1 September 2000). Zero: The Biography of a Dangerous Idea. Penguin. hlm. 39. ISBN 978-0-14-029647-1. OCLC 1005913932. Diakses tanggal 30 April 2022.
- ^ Kaplan 2000, hlm. 17.
- ^ Nieder, Andreas (19 November 2019). A Brain for Numbers: The Biology of the Number Instinct. MIT Press. hlm. 286. ISBN 978-0-262-35432-5. Diakses tanggal 30 April 2022.
- ^ Huggett, Nick (2019). "Zeno's Paradoxes". Dalam Zalta, Edward N. The Stanford Encyclopedia of Philosophy (edisi ke-Winter 2019). Metaphysics Research Lab, Stanford University. Diarsipkan dari versi asli tanggal 10 January 2021. Diakses tanggal 2020-08-09.
- ^ Neugebauer, Otto (1969). The Exact Sciences in Antiquity (edisi ke-2). Dover Publications. hlm. 13–14, plate 2. ISBN 978-0-486-22332-2.
- ^ Mercier, Raymond. "Consideration of the Greek symbol 'zero'" (PDF). Home of Kairos. Diarsipkan dari versi asli (PDF) tanggal 5 November 2020. Diakses tanggal 28 March 2020. Templat:Sps
- ^ Ptolemy (1998). Ptolemy's Almagest. Diterjemahkan oleh Toomer, G. J. Princeton University Press. hlm. 306–307. ISBN 0-691-00260-6.
- ^ O'Connor, J J; Robertson, E F. "A history of Zero". MacTutor History of Mathematics. Diarsipkan dari versi asli tanggal 7 April 2020. Diakses tanggal 28 March 2020.
- ^ "Proposal to encode the Greek Zero in the UCS" (PDF). 2024-07-31. Diarsipkan dari versi asli (PDF) tanggal 2022-10-07.
- ^ Neugebauer, Otto (2016). Ethiopic Astronomy and Computus (edisi ke-Red Sea Press). Red Sea Press. hlm. 25, 53, 93, 183, Plate I. ISBN 978-1-56902-440-9. . The pages in this edition have numbers six less than the same pages in the original edition.
- ^ Deckers, Michael (2003). "Cyclus Decemnovennalis Dionysii" [Nineteen Year Cycle of Dionysius]. Diarsipkan dari versi asli tanggal 15 January 2019.
- ^ C. W. Jones, ed., Opera Didascalica, vol. 123C in Corpus Christianorum, Series Latina.
- ^ Hodgkin, Luke (2005). A History of Mathematics: From Mesopotamia to Modernity . Oxford University Press. hlm. 85. ISBN 978-0-19-152383-0.
- ^ O'Connor, John J.; Robertson, Edmund F. (January 2004), "Chinese numerals", Arsip Sejarah Matematika MacTutor, Universitas St Andrews.
- ^ Hodgkin, Luke (2005). A History of Mathematics: From Mesopotamia to Modernity . Oxford University Press. hlm. 85. ISBN 978-0-19-152383-0.
- ^ "Chinese numerals". Maths History (dalam bahasa Inggris). Diakses tanggal 2024-04-28.
- ^ Shen, Crossley & Lun 1999, hlm. 12: "the ancient Chinese system is a place notation system"
- ^ Eberhard-Bréard, Andrea (2008), "Mathematics in China", dalam Selin, Helaine, Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures (dalam bahasa Inggris), Dordrecht: Springer Netherlands, hlm. 1371–1378, doi:10.1007/978-1-4020-4425-0_9453, ISBN 978-1-4020-4425-0, diakses tanggal 2024-04-28
- ^ Shen Kanshen Crossley, John N.; Lun, Anthony W.-C. (1999). The Nine Chapters on the Mathematical Art: Companion and Commentary. Oxford University Press. hlm. 35. ISBN 978-0-19-853936-0.
zero was regarded as a number in India ... whereas the Chinese employed a vacant position
- ^ "Mathematics in the Near and Far East" (PDF). grmath4.phpnet.us. hlm. 262. Diarsipkan dari versi asli (PDF) tanggal 4 November 2013. Diakses tanggal 7 June 2012.
- ^ Martzloff, Jean-Claude (2007). A History of Chinese Mathematics. Diterjemahkan oleh Wilson, Stephen S. Springer. hlm. 208. ISBN 978-3-540-33783-6.
- ^ Struik, Dirk J. (1987). A Concise History of Mathematics. New York: Dover Publications. pp. 32–33. "In these matrices we find negative numbers, which appear here for the first time in history."
- ^ a b Plofker, Kim (2009). Mathematics in India. Princeton University Press. hlm. 54–56. ISBN 978-0-691-12067-6.
In the Chandah-sutra of Pingala, dating perhaps the third or second century BC, [ ...] Pingala's use of a zero symbol [śūnya] as a marker seems to be the first known explicit reference to zero. ... In the Chandah-sutra of Pingala, dating perhaps the third or second century BC, there are five questions concerning the possible meters for any value "n". [ ...] The answer is (2)7 = 128, as expected, but instead of seven doublings, the process (explained by the sutra) required only three doublings and two squarings – a handy time saver where "n" is large. Pingala's use of a zero symbol as a marker seems to be the first known explicit reference to zero
- ^ Vaman Shivaram Apte (1970). "Sanskrit Prosody and Important Literary and Geographical Names in the Ancient History of India". The Student's Sanskrit-English Dictionary. Motilal Banarsidass. hlm. 648–649. ISBN 978-81-208-0045-8. Diakses tanggal 21 April 2017.
- ^ Hall, Rachel (February 15, 2005). "Math for Poets and Drummers: The Mathematics of Rhythm" (PDF) (slideshow). Saint Joseph's University. Diarsipkan dari versi asli (PDF) tanggal 22 January 2019. Diakses tanggal 20 December 2015.
- ^ Bourbaki 1998, hlm. 46
- ^ Weiss, Ittay (20 September 2017). "Nothing matters: How India's invention of zero helped create modern mathematics". The Conversation. Diarsipkan dari versi asli tanggal 12 July 2018. Diakses tanggal 12 July 2018.
- ^ Devlin, Hannah (13 September 2017). "Much ado about nothing: ancient Indian text contains earliest zero symbol". The Guardian. ISSN 0261-3077. Diarsipkan dari versi asli tanggal 20 November 2017. Diakses tanggal 14 September 2017.
- ^ "Carbon dating finds Bakhshali manuscript contains oldest recorded origins of the symbol 'zero'". Bodleian Library. 14 September 2017. Diarsipkan dari versi asli tanggal 14 September 2017. Diakses tanggal 25 October 2017.
- ^ Plofker, Kim; Keller, Agathe; Hayashi, Takao; Montelle, Clemency; Wujastyk, Dominik (2017-10-06). "The Bakhshālī Manuscript: A Response to the Bodleian Library's Radiocarbon Dating". History of Science in South Asia (dalam bahasa Inggris). 5 (1): 134–150. doi:10.18732/H2XT07 .
- ^ Ifrah (2000), hlm. 416.
- ^ Kaplan 2000, hlm. 68–75.
- ^ Algebra, with Arithmetic and Mensuration from the Sanscrit of Brahmegupta and Bháscara. Diterjemahkan oleh Henry Thomas Colebrooke. London: John Murray. 1817. OCLC 1039515732.
- ^ Kesalahan pengutipan: Tag
<ref>
tidak sah; tidak ditemukan teks untuk ref bernamaDevlin 20172
- ^ Kaplan 2000.
- ^ Cœdès, George (1931). "A propos de l'origine des chiffres arabes". Bulletin of the School of Oriental Studies, University of London (dalam bahasa Prancis). Cambridge University Press. 6 (2): 323–328. doi:10.1017/S0041977X00092806. JSTOR 607661.
- ^ Diller, Anthony (1996). "New Zeros and Old Khmer". Mon-Khmer Studies. 25: 125–132.
sealang.net/sala/archives/pdf8/diller1996new.pdf
- ^ Ifrah (2000), hlm. 400.
- ^ Casselman, Bill. "All for Nought". ams.org. University of British Columbia), American Mathematical Society. Diarsipkan dari versi asli tanggal 6 December 2015. Diakses tanggal 20 December 2015.