Asam ribonukleat

keluarga molekul biologis besar

Asam ribonukleat (bahasa Inggris: ribonucleic acid, RNA) adalah molekul polimer yang terlibat dalam berbagai peran biologis dalam mengkode, dekode, regulasi, dan ekspresi gen. RNA dan DNA adalah asam nukleat, dan bersama dengan protein dan karbohidrat, merupakan empat makromolekul utama yang penting untuk semua bentuk kehidupan yang diketahui. Seperti DNA, RNA dirakit sebagai rantai nukleotida, tetapi tidak seperti DNA, RNA lebih sering ditemukan di alam sebagai untai tunggal yang melipat ke dirinya sendiri, daripada untai ganda berpasangan. Organisme seluler menggunakan RNA duta (bahasa Inggris: messenger RNA, mRNA) untuk menyampaikan informasi genetik (menggunakan huruf G, U, A, dan C untuk menunjukkan basa nitrogen guanin, urasil, adenin, dan sitosin (bahasa Inggris: cytosine)) yang mengarahkan sintesis protein spesifik. Banyak virus mengkodekan informasi genetik mereka menggunakan genom RNA.

Sebuah hairpin loop dari sebuah pra-mRNA. Yang di-highlight adalah nukleobasa (hijau) dan tulang punggung ribosa-fosfat (biru). Catatan bahwa ini adalah satu untai RNA yang melipat kembali ke dirinya sendiri. No

Beberapa molekul RNA berperan aktif dalam sel dengan mengkatalis reaksi biologis, mengendalikan ekspresi gen, atau merasakan dan mengkomunikasikan tanggapan terhadap sinyal seluler. Salah satu dari proses aktif ini adalah sintesis protein, fungsi yang universal di mana molekul mRNA mengarhkan perakitan protein pada ribosom. Proses ini menggunakan molekul RNA transfer (bahasa Inggris: transfer RNA, tRNA) untuk memberikan asam amino ke ribosom, di mana RNA ribosomal (bahasa Inggris: ribosomal RNA, rRNA) kemudian menghubungkan asam amino bersama-sama untuk membentuk protein.

Struktur

Struktur dasar RNA mirip dengan DNA. RNA merupakan polimer yang tersusun dari sejumlah nukleotida. Setiap nukleotida memiliki satu gugus fosfat, satu gugus pentosa, dan satu gugus basa nitrogen (basa N). Polimer tersusun dari ikatan berselang-seling antara gugus fosfat dari satu nukleotida dengan gugus pentosa dari nukleotida yang lain.

Perbedaan dengan DNA

Perbedaan RNA dengan DNA terletak pada satu gugus hidroksil cincin gula pentosa, sehingga dinamakan ribosa, sedangkan gugus pentosa pada DNA disebut deoksiribosa.[1] Basa nitrogen pada RNA sama dengan DNA, kecuali basa timina pada DNA diganti dengan urasil pada RNA. Jadi tetap ada empat pilihan: adenina, guanina, sitosina, atau urasil untuk suatu nukleotida. Selain itu, bentuk konformasi RNA tidak berupa pilin ganda sebagaimana DNA, tetapi bervariasi sesuai dengan tipe dan fungsinya.

DNA dapat ditemukan di dalam nukleus atau inti sel dan juga didalam cairan inti sel atau nukleoid, sedangkan RNA ditemukan di sitoplasma sel, nukelus, dan ribosom. Bentuk rantai DNA memiliki bentuk untai ganda yang terdiri dari dua untai yang saling berpilin, sedangkan RNA hanya terdiri atas satu untai atau heliks tunggal. RNA juga memiliki rantai nukleotida yang jauh lebih pendek jika dibandingkan dengan rantai DNA. DNA terdiri atas basa nitrogen guanin yang berpasangan dengan sitosin, dan adenin yang berpasangan dengan timin. Adapun RNA terdiri atas basa nitrogen guanin yang berpasangan dengan sitosin, namun berbeda dengan DNA, adenin RNA berpasangan dengan urasil.

Berdasar fungsi, DNA berfungsi menyimpan dan menurunkan informasi genetik dalam jangka waktu yang panjang. Adapun RNA berfungsi sebagai pembawa dan penerjemah kode genetik untuk pembuatan protein. RNA juga berfungsi menghambat ekspresi gen untuk menekan pertumbuhan tumor atau kanker.[2]

Jenis

RNA pembawa pesan (messenger RNA/mRNA) adalah jenis RNA yang mentransfer informasi genetik dari DNA ke ribosom, di mana sintesis protein (translasi) terjadi di dalam sitoplasma sel. Urutan pengkodean mRNA menentukan urutan spesifik asam amino dalam protein yang dihasilkan. Namun, sebagian besar RNA, sekitar 97% pada eukariota, tidak mengkode protein.[3]

RNA yang tidak mengkode protein (RNA non-kode atau ncRNA) ini dapat berasal dari gen mereka sendiri yang berbeda (gen RNA) atau dari intron mRNA. RNA non-kode yang paling terkenal adalah RNA transfer (tRNA) dan RNA ribosom (rRNA), yang keduanya memainkan peran kunci dalam proses translasi. Selain itu, banyak ncRNA yang terlibat dalam regulasi gen, pemrosesan RNA, dan fungsi seluler lainnya. Beberapa RNA, yang dikenal sebagai ribozim, dapat mengkatalisis reaksi kimia, seperti memotong dan menggabungkan molekul RNA lain atau memfasilitasi pembentukan ikatan peptida dalam ribosom.[4]

Jenis berdasar panjang

RNA dapat dikategorikan menjadi RNA kecil dan RNA panjang berdasarkan panjang rantainya. Biasanya, RNA kecil memiliki panjang kurang dari 200 nukleotida, sedangkan RNA panjang memiliki panjang lebih dari 200 nukleotida. RNA panjang terutama terdiri dari RNA non-kode panjang (lncRNA) dan RNA pembawa pesan (mRNA). Di sisi lain, RNA kecil meliputi RNA ribosom 5.8S (rRNA), rRNA 5S, RNA transfer (tRNA), mikroRNA (miRNA), RNA pengganggu kecil (siRNA), RNA nukleolus kecil (snoRNA), RNA yang berinteraksi dengan Piwi (piRNA), RNA kecil yang diturunkan dari tRNA (tsRNA), dan RNA yang diturunkan dari rDNA (srRNA). Terdapat beberapa pengecualian, seperti 5S rRNA yang ditemukan di Halococcus (sejenis Arkea), yang memiliki penyisipan yang meningkatkan ukurannya.[5]

Jenis berdasar proses translasi

Messenger RNA (mRNA) membawa instruksi genetik untuk membuat protein ke ribosom, yang merupakan pabrik pembuatan protein sel. Setiap rangkaian tiga nukleotida (disebut kodon) dalam mRNA berhubungan dengan asam amino tertentu. Pada sel eukariotik, mRNA dimulai sebagai mRNA prekursor (pra-mRNA), yang ditranskripsi dari DNA. Kemudian diproses menjadi mRNA matang dengan menghilangkan bagian yang tidak dikodekan (intron). mRNA diangkut dari nukleus ke sitoplasma, di mana ribosom mengikatnya, dan dengan bantuan transfer RNA (tRNA), mRNA ditranslasi menjadi protein. Pada sel prokariotik, yang tidak memiliki nukleus yang jelas, mRNA dapat menempel pada ribosom ketika masih ditranskripsi. Seiring waktu, mRNA dipecah menjadi komponen nukleotidanya dengan bantuan ribonuklease.

Transfer RNA (tRNA) adalah rantai RNA kecil, dengan panjang sekitar 80 nukleotida, yang mengangkut asam amino tertentu ke ribosom selama sintesis protein. RNA ini memiliki dua wilayah utama: satu untuk melekatkan asam amino dan satu lagi yang disebut antikodon, yang mengenali dan berikatan dengan kodon yang cocok pada untai mRNA melalui ikatan hidrogen.

Ribosomal RNA (rRNA) membentuk struktur inti ribosom dan memfasilitasi proses translasi. Ribosom eukariotik mengandung empat jenis rRNA: 18S, 5,8S, 28S, dan 5S. Tiga di antaranya diproduksi di dalam nukleolus, sedangkan yang lainnya dibuat di tempat lain. Di dalam sitoplasma, rRNA bergabung dengan protein untuk membentuk ribosom, yang kemudian berikatan dengan mRNA dan melakukan sintesis protein. Beberapa ribosom dapat terikat pada satu mRNA pada saat yang sama, dan sebagian besar RNA dalam sel eukariotik adalah rRNA.

Transfer-messenger RNA (tmRNA), yang ditemukan pada banyak bakteri dan plastida, berperan dalam menandai protein yang tidak lengkap untuk didegradasi dan mencegah penghentian ribosom saat mRNA tidak memiliki kodon stop.[6]

Fungsi

Pada sekelompok virus (misalnya bakteriofag), RNA merupakan bahan genetik. Ia berfungsi sebagai penyimpan informasi genetik, sebagaimana DNA pada organisme hidup lain. Ketika virus ini menyerang sel hidup, RNA yang dibawanya masuk ke sitoplasma sel korban, yang kemudian ditranslasi oleh sel inang untuk menghasilkan virus-virus baru.

Namun, peran penting RNA terletak pada fungsinya sebagai perantara antara DNA dan protein dalam proses ekspresi genetik karena ini berlaku untuk semua organisme hidup. Dalam peran ini, RNA diproduksi sebagai salinan kode urutan basa nitrogen DNA dalam proses transkripsi. Kode urutan basa ini tersusun dalam bentuk 'triplet', tiga urutan basa N, yang dikenal dengan nama kodon. Setiap kodon berelasi dengan satu asam amino (atau kode untuk berhenti), monomer yang menyusun protein. Lihat ekspresi genetik untuk keterangan lebih lanjut.

Penelitian mutakhir atas fungsi RNA menunjukkan bukti yang mendukung atas teori 'dunia RNA', yang menyatakan bahwa pada awal proses evolusi, RNA merupakan bahan genetik universal sebelum organisme hidup memakai DNA.

Interferensi

Suatu gejala yang baru ditemukan pada penghujung abad ke-20 adalah adanya mekanisme peredaman (silencing) dalam ekspresi genetik. Kode genetik yang dibawa RNA tidak diterjemahkan (translasi) menjadi protein oleh tRNA. Ini terjadi karena sebelum sempat ditranslasi, mRNA dicerna/dihancurkan oleh suatu mekanisme yang disebut sebagai "interferensi RNA". Mekanisme ini melibatkan paling sedikit tiga substansi (enzim dan protein lain). Gejala ini pertama kali ditemukan pada nematoda Caenorhabditis elegans tetapi selanjutnya ditemukan pada hampir semua kelompok organisme hidup.

Referensi

  1. ^ (Inggris) Anthony JF Griffiths, Jeffrey H Miller, David T Suzuki, Richard C Lewontin, and William M Gelbart (2000). An Introduction to Genetic Analysis. University of British Columbia, University of California, Harvard University (edisi ke-7). W. H. Freeman. hlm. Properties of RNA. ISBN 0-7167-3520-2. Diakses tanggal 2010-08-24. 
  2. ^ Utami, Silmi Nurul. Raimarda, Rigel, ed. "Apa Saja Perbedaan RNA dan DNA ?". Kompas.com. Diakses tanggal 14 November 2020. 
  3. ^ Mattick, John S (2001-11). "Non‐coding RNAs: the architects of eukaryotic complexity". EMBO reports (dalam bahasa Inggris). 2 (11): 986–991. doi:10.1093/embo-reports/kve230. ISSN 1469-221X. PMC 1084129 . PMID 11713189. 
  4. ^ Nissen, P.; Hansen, J.; Ban, N.; Moore, P. B.; Steitz, T. A. (2000-08-11). "The structural basis of ribosome activity in peptide bond synthesis". Science (New York, N.Y.). 289 (5481): 920–930. doi:10.1126/science.289.5481.920. ISSN 0036-8075. PMID 10937990. 
  5. ^ Tirumalai, Madhan R.; Kaelber, Jason T.; Park, Donghyun R.; Tran, Quyen; Fox, George E. (2020-10). "Cryo-electron microscopy visualization of a large insertion in the 5S ribosomal RNA of the extremely halophilic archaeon Halococcus morrhuae". FEBS open bio. 10 (10): 1938–1946. doi:10.1002/2211-5463.12962. ISSN 2211-5463. PMC 7530397 . PMID 32865340. 
  6. ^ Gueneau de Novoa, Pulcherie; Williams, Kelly P. (2004-01-01). "The tmRNA website: reductive evolution of tmRNA in plastids and other endosymbionts". Nucleic Acids Research. 32 (Database issue): D104–108. doi:10.1093/nar/gkh102. ISSN 1362-4962. PMC 308836 . PMID 14681369. 

Pranala luar

Templat:Ekspresi gen Templat:RNA-footer