Asam ribonukleat
Asam ribonukleat (bahasa Inggris: ribonucleic acid, RNA) adalah molekul polimer yang terlibat dalam berbagai peran biologis dalam mengkode, dekode, regulasi, dan ekspresi gen. RNA dan DNA adalah asam nukleat, dan bersama dengan protein dan karbohidrat, merupakan empat makromolekul utama yang penting untuk semua bentuk kehidupan yang diketahui. Seperti DNA, RNA dirakit sebagai rantai nukleotida, tetapi tidak seperti DNA, RNA lebih sering ditemukan di alam sebagai untai tunggal yang melipat ke dirinya sendiri, daripada untai ganda berpasangan. Organisme seluler menggunakan RNA duta (bahasa Inggris: messenger RNA, mRNA) untuk menyampaikan informasi genetik (menggunakan huruf G, U, A, dan C untuk menunjukkan basa nitrogen guanin, urasil, adenin, dan sitosin (bahasa Inggris: cytosine)) yang mengarahkan sintesis protein spesifik. Banyak virus mengkodekan informasi genetik mereka menggunakan genom RNA.
Bagian dari seri |
Genetika |
---|
Komponen penting |
Sejarah dan topik |
Penelitan |
Pengobatan personal |
Pengobatan personal |
Beberapa molekul RNA berperan aktif dalam sel dengan mengkatalis reaksi biologis, mengendalikan ekspresi gen, atau merasakan dan mengkomunikasikan tanggapan terhadap sinyal seluler. Salah satu dari proses aktif ini adalah sintesis protein, fungsi yang universal di mana molekul mRNA mengarhkan perakitan protein pada ribosom. Proses ini menggunakan molekul RNA transfer (bahasa Inggris: transfer RNA, tRNA) untuk memberikan asam amino ke ribosom, di mana RNA ribosomal (bahasa Inggris: ribosomal RNA, rRNA) kemudian menghubungkan asam amino bersama-sama untuk membentuk protein.
Struktur
Struktur dasar RNA mirip dengan DNA. RNA merupakan polimer yang tersusun dari sejumlah nukleotida. Setiap nukleotida memiliki satu gugus fosfat, satu gugus pentosa, dan satu gugus basa nitrogen (basa N). Polimer tersusun dari ikatan berselang-seling antara gugus fosfat dari satu nukleotida dengan gugus pentosa dari nukleotida yang lain.
Perbedaan dengan DNA
Perbedaan RNA dengan DNA terletak pada satu gugus hidroksil cincin gula pentosa, sehingga dinamakan ribosa, sedangkan gugus pentosa pada DNA disebut deoksiribosa.[1] Basa nitrogen pada RNA sama dengan DNA, kecuali basa timina pada DNA diganti dengan urasil pada RNA. Jadi tetap ada empat pilihan: adenina, guanina, sitosina, atau urasil untuk suatu nukleotida. Selain itu, bentuk konformasi RNA tidak berupa pilin ganda sebagaimana DNA, tetapi bervariasi sesuai dengan tipe dan fungsinya.
DNA dapat ditemukan di dalam nukleus atau inti sel dan juga didalam cairan inti sel atau nukleoid, sedangkan RNA ditemukan di sitoplasma sel, nukelus, dan ribosom. Bentuk rantai DNA memiliki bentuk untai ganda yang terdiri dari dua untai yang saling berpilin, sedangkan RNA hanya terdiri atas satu untai atau heliks tunggal. RNA juga memiliki rantai nukleotida yang jauh lebih pendek jika dibandingkan dengan rantai DNA. DNA terdiri atas basa nitrogen guanin yang berpasangan dengan sitosin, dan adenin yang berpasangan dengan timin. Adapun RNA terdiri atas basa nitrogen guanin yang berpasangan dengan sitosin, namun berbeda dengan DNA, adenin RNA berpasangan dengan urasil.
Berdasar fungsi, DNA berfungsi menyimpan dan menurunkan informasi genetik dalam jangka waktu yang panjang. Adapun RNA berfungsi sebagai pembawa dan penerjemah kode genetik untuk pembuatan protein. RNA juga berfungsi menghambat ekspresi gen untuk menekan pertumbuhan tumor atau kanker.[2]
Jenis
RNA pembawa pesan (messenger RNA/mRNA) adalah jenis RNA yang mentransfer informasi genetik dari DNA ke ribosom, di mana sintesis protein (translasi) terjadi di dalam sitoplasma sel. Urutan pengkodean mRNA menentukan urutan spesifik asam amino dalam protein yang dihasilkan. Namun, sebagian besar RNA, sekitar 97% pada eukariota, tidak mengkode protein.[3]
RNA yang tidak mengkode protein (RNA non-kode atau ncRNA) ini dapat berasal dari gen mereka sendiri yang berbeda (gen RNA) atau dari intron mRNA. RNA non-kode yang paling terkenal adalah RNA transfer (tRNA) dan RNA ribosom (rRNA), yang keduanya memainkan peran kunci dalam proses translasi. Selain itu, banyak ncRNA yang terlibat dalam regulasi gen, pemrosesan RNA, dan fungsi seluler lainnya. Beberapa RNA, yang dikenal sebagai ribozim, dapat mengkatalisis reaksi kimia, seperti memotong dan menggabungkan molekul RNA lain atau memfasilitasi pembentukan ikatan peptida dalam ribosom.[4]
Jenis berdasar panjang
RNA dapat dikategorikan menjadi RNA kecil dan RNA panjang berdasarkan panjang rantainya. Biasanya, RNA kecil memiliki panjang kurang dari 200 nukleotida, sedangkan RNA panjang memiliki panjang lebih dari 200 nukleotida. RNA panjang terutama terdiri dari RNA non-kode panjang (lncRNA) dan RNA pembawa pesan (mRNA). Di sisi lain, RNA kecil meliputi RNA ribosom 5.8S (rRNA), rRNA 5S, RNA transfer (tRNA), mikroRNA (miRNA), RNA pengganggu kecil (siRNA), RNA nukleolus kecil (snoRNA), RNA yang berinteraksi dengan Piwi (piRNA), RNA kecil yang diturunkan dari tRNA (tsRNA), dan RNA yang diturunkan dari rDNA (srRNA). Terdapat beberapa pengecualian, seperti 5S rRNA yang ditemukan di Halococcus (sejenis Arkea), yang memiliki penyisipan yang meningkatkan ukurannya.[5]
Jenis berdasar proses translasi
Messenger RNA (mRNA) membawa instruksi genetik untuk membuat protein ke ribosom, yang merupakan pabrik pembuatan protein sel. Setiap rangkaian tiga nukleotida (disebut kodon) dalam mRNA berhubungan dengan asam amino tertentu. Pada sel eukariotik, mRNA dimulai sebagai mRNA prekursor (pra-mRNA), yang ditranskripsi dari DNA. Kemudian diproses menjadi mRNA matang dengan menghilangkan bagian yang tidak dikodekan (intron). mRNA diangkut dari nukleus ke sitoplasma, di mana ribosom mengikatnya, dan dengan bantuan transfer RNA (tRNA), mRNA ditranslasi menjadi protein. Pada sel prokariotik, yang tidak memiliki nukleus yang jelas, mRNA dapat menempel pada ribosom ketika masih ditranskripsi. Seiring waktu, mRNA dipecah menjadi komponen nukleotidanya dengan bantuan ribonuklease.
Transfer RNA (tRNA) adalah rantai RNA kecil, dengan panjang sekitar 80 nukleotida, yang mengangkut asam amino tertentu ke ribosom selama sintesis protein. RNA ini memiliki dua wilayah utama: satu untuk melekatkan asam amino dan satu lagi yang disebut antikodon, yang mengenali dan berikatan dengan kodon yang cocok pada untai mRNA melalui ikatan hidrogen.
Ribosomal RNA (rRNA) membentuk struktur inti ribosom dan memfasilitasi proses translasi. Ribosom eukariotik mengandung empat jenis rRNA: 18S, 5,8S, 28S, dan 5S. Tiga di antaranya diproduksi di dalam nukleolus, sedangkan yang lainnya dibuat di tempat lain. Di dalam sitoplasma, rRNA bergabung dengan protein untuk membentuk ribosom, yang kemudian berikatan dengan mRNA dan melakukan sintesis protein. Beberapa ribosom dapat terikat pada satu mRNA pada saat yang sama, dan sebagian besar RNA dalam sel eukariotik adalah rRNA.
Transfer-messenger RNA (tmRNA), yang ditemukan pada banyak bakteri dan plastida, berperan dalam menandai protein yang tidak lengkap untuk didegradasi dan mencegah penghentian ribosom saat mRNA tidak memiliki kodon stop.[6]
Fungsi
Pada sekelompok virus (misalnya bakteriofag), RNA merupakan bahan genetik. Ia berfungsi sebagai penyimpan informasi genetik, sebagaimana DNA pada organisme hidup lain. Ketika virus ini menyerang sel hidup, RNA yang dibawanya masuk ke sitoplasma sel korban, yang kemudian ditranslasi oleh sel inang untuk menghasilkan virus-virus baru.
Namun, peran penting RNA terletak pada fungsinya sebagai perantara antara DNA dan protein dalam proses ekspresi genetik karena ini berlaku untuk semua organisme hidup. Dalam peran ini, RNA diproduksi sebagai salinan kode urutan basa nitrogen DNA dalam proses transkripsi. Kode urutan basa ini tersusun dalam bentuk 'triplet', tiga urutan basa N, yang dikenal dengan nama kodon. Setiap kodon berelasi dengan satu asam amino (atau kode untuk berhenti), monomer yang menyusun protein. Lihat ekspresi genetik untuk keterangan lebih lanjut.
Penelitian mutakhir atas fungsi RNA menunjukkan bukti yang mendukung atas teori 'dunia RNA', yang menyatakan bahwa pada awal proses evolusi, RNA merupakan bahan genetik universal sebelum organisme hidup memakai DNA.
Interferensi
Suatu gejala yang baru ditemukan pada penghujung abad ke-20 adalah adanya mekanisme peredaman (silencing) dalam ekspresi genetik. Kode genetik yang dibawa RNA tidak diterjemahkan (translasi) menjadi protein oleh tRNA. Ini terjadi karena sebelum sempat ditranslasi, mRNA dicerna/dihancurkan oleh suatu mekanisme yang disebut sebagai "interferensi RNA". Mekanisme ini melibatkan paling sedikit tiga substansi (enzim dan protein lain). Gejala ini pertama kali ditemukan pada nematoda Caenorhabditis elegans tetapi selanjutnya ditemukan pada hampir semua kelompok organisme hidup.
Sejarah penemuan
Penelitian tentang RNA telah menghasilkan penemuan biologis yang signifikan, yang menghasilkan beberapa Hadiah Nobel. Asam nukleat pertama kali ditemukan pada 1868 oleh Friedrich Miescher, yang menamainya “nuklein” karena ditemukan di dalam nukleus. Belakangan, diketahui bahwa sel prokariotik, yang tidak memiliki nukleus, juga mengandung asam nukleat. Pada 1939, para ilmuwan menduga bahwa RNA berperan dalam sintesis protein. Pada 1959, Severo Ochoa (bersama dengan Arthur Kornberg) memenangkan Hadiah Nobel Kedokteran karena menemukan enzim yang dapat mensintesis RNA di laboratorium, meskipun kemudian terungkap bahwa enzim tersebut sebenarnya memecah RNA.
Pada 1956, Alex Rich dan David Davies adalah orang pertama yang membentuk struktur kristal RNA yang dapat dianalisis dengan kristalografi sinar-X. Pengurutan tRNA ragi oleh Robert W. Holley membuatnya mendapatkan Hadiah Nobel Kedokteran pada 1968, bersama dengan Har Gobind Khorana dan Marshall Nirenberg.
Penemuan retrovirus dan reverse transcriptase pada awal 1970-an, yang menunjukkan bahwa RNA dapat disalin ke dalam DNA, menghasilkan Hadiah Nobel pada 1975 untuk David Baltimore, Renato Dulbecco, dan Howard Temin. Tim Walter Fiers adalah yang pertama kali mengurutkan seluruh genom RNA virus pada 1976.
Pada 1977, penemuan penyambungan RNA pada virus dan gen seluler membuat Philip Sharp dan Richard Roberts mendapatkan Hadiah Nobel pada 1993. Identifikasi RNA katalitik (ribozim) pada 1980-an membuat Thomas Cech dan Sidney Altman mendapatkan Nobel pada 1989. Pada 1990, RNA interferensi ditemukan pada petunia, di mana gen yang diintroduksi membungkam gen yang serupa di dalam tanaman-mekanisme yang penting dalam regulasi gen.
MicroRNA ditemukan sekitar waktu yang sama, berperan dalam perkembangan organisme seperti C. elegans. Penelitian tentang gangguan RNA membuat Andrew Fire dan Craig Mello mendapatkan Hadiah Nobel pada 2006. Pada tahun yang sama, Roger Kornberg memenangkan Nobel untuk karyanya pada transkripsi RNA.
Kemudian, penemuan molekul RNA yang mengatur gen memacu pengembangan obat berbasis RNA, seperti siRNA untuk membungkam gen. Pada 2009, Hadiah Nobel dianugerahkan kepada Venki Ramakrishnan, Thomas A. Steitz, dan Ada Yonath karena berhasil mengungkap struktur atom ribosom. Pada 2023, Katalin Karikó dan Drew Weissman menerima Hadiah Nobel untuk terobosan mereka dalam nukleosida yang dimodifikasi, yang memungkinkan pembuatan vaksin mRNA untuk COVID-19.
Penggunaan medis
Awalnya, RNA dianggap tidak cocok untuk terapi karena cepat rusak. Namun, kemajuan dalam membuat RNA lebih stabil telah membuatnya berguna. RNA dapat melipat menjadi bentuk yang kompleks dan berinteraksi dengan protein, asam nukleat, dan molekul kecil, menciptakan situs aktif yang dapat mendorong fungsi terapeutik.[7] Vaksin berbasis RNA dianggap lebih mudah diproduksi daripada vaksin tradisional, yang membutuhkan pertumbuhan dan penelitian patogen dalam waktu yang lama. Alih-alih menggunakan patogen yang telah dibunuh atau dilemahkan, vaksin RNA mendorong tubuh untuk memberikan respons lebih cepat.[8]
Molekul kecil dengan kualitas seperti obat tradisional dapat menargetkan RNA dan DNA, sehingga menawarkan pengobatan potensial untuk penyakit baru. Namun, penelitian tentang molekul kecil yang secara khusus menargetkan RNA masih terbatas, dan hanya sedikit obat yang disetujui untuk digunakan manusia yang melakukan hal ini. Obat-obatan seperti ribavirin, branaplam, dan ataluren membantu menstabilkan struktur RNA dan memengaruhi penyambungan pada berbagai gangguan.[9]
Kemungkinan terapi baru juga telah muncul dari mRNA pengkode protein, terutama untuk kasus-kasus di mana produksi protein yang pendek namun intens diperlukan.[10] In vitro transcribed mRNA (IVT-mRNA) telah digunakan untuk menghasilkan protein dengan sukses dalam penelitian yang berkaitan dengan penyembuhan tulang, pengembangan sel punca, dan fungsi jantung pada hewan. Selain itu, small interfering RNA (siRNA) dapat membungkam gen tertentu dan sangat membantu dalam mempelajari fungsi gen, memastikan target terapeutik, dan pengembangan obat.[11]
Vaksin mRNA, yang menginstruksikan sel untuk memproduksi protein yang memicu respons kekebalan tubuh, telah menjadi jenis vaksin baru yang penting. Keberhasilannya telah dibuktikan dalam skala besar dengan vaksin COVID-19 selama pandemi.
Referensi
- ^ (Inggris) Anthony JF Griffiths, Jeffrey H Miller, David T Suzuki, Richard C Lewontin, and William M Gelbart (2000). An Introduction to Genetic Analysis. University of British Columbia, University of California, Harvard University (edisi ke-7). W. H. Freeman. hlm. Properties of RNA. ISBN 0-7167-3520-2. Diakses tanggal 2010-08-24.
- ^ Utami, Silmi Nurul. Raimarda, Rigel, ed. "Apa Saja Perbedaan RNA dan DNA ?". Kompas.com. Diakses tanggal 14 November 2020.
- ^ Mattick, John S (2001-11). "Non‐coding RNAs: the architects of eukaryotic complexity". EMBO reports (dalam bahasa Inggris). 2 (11): 986–991. doi:10.1093/embo-reports/kve230. ISSN 1469-221X. PMC 1084129 . PMID 11713189.
- ^ Nissen, P.; Hansen, J.; Ban, N.; Moore, P. B.; Steitz, T. A. (2000-08-11). "The structural basis of ribosome activity in peptide bond synthesis". Science (New York, N.Y.). 289 (5481): 920–930. doi:10.1126/science.289.5481.920. ISSN 0036-8075. PMID 10937990.
- ^ Tirumalai, Madhan R.; Kaelber, Jason T.; Park, Donghyun R.; Tran, Quyen; Fox, George E. (2020-10). "Cryo-electron microscopy visualization of a large insertion in the 5S ribosomal RNA of the extremely halophilic archaeon Halococcus morrhuae". FEBS open bio. 10 (10): 1938–1946. doi:10.1002/2211-5463.12962. ISSN 2211-5463. PMC 7530397 . PMID 32865340.
- ^ Gueneau de Novoa, Pulcherie; Williams, Kelly P. (2004-01-01). "The tmRNA website: reductive evolution of tmRNA in plastids and other endosymbionts". Nucleic Acids Research. 32 (Database issue): D104–108. doi:10.1093/nar/gkh102. ISSN 1362-4962. PMC 308836 . PMID 14681369.
- ^ Cech, Thomas R.; Steitz, Joan A. (2014-03-27). "The noncoding RNA revolution-trashing old rules to forge new ones". Cell. 157 (1): 77–94. doi:10.1016/j.cell.2014.03.008. ISSN 1097-4172. PMID 24679528.
- ^ Palacino, James; Swalley, Susanne E; Song, Cheng; Cheung, Atwood K; Shu, Lei; Zhang, Xiaolu; Van Hoosear, Mailin; Shin, Youngah; Chin, Donovan N (2015-07). "SMN2 splice modulators enhance U1–pre-mRNA association and rescue SMA mice". Nature Chemical Biology (dalam bahasa Inggris). 11 (7): 511–517. doi:10.1038/nchembio.1837. ISSN 1552-4450.
- ^ Roy, Bijoyita; Friesen, Westley J.; Tomizawa, Yuki; Leszyk, John D.; Zhuo, Jin; Johnson, Briana; Dakka, Jumana; Trotta, Christopher R.; Xue, Xiaojiao (2016-11). "Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression". Proceedings of the National Academy of Sciences (dalam bahasa Inggris). 113 (44): 12508–12513. doi:10.1073/pnas.1605336113. ISSN 0027-8424. PMC 5098639 . PMID 27702906.
- ^ Qadir, Muhammad Imran; Bukhat, Sherien; Rasul, Sumaira; Manzoor, Hamid; Manzoor, Majid (2020-02). "RNA therapeutics: Identification of novel targets leading to drug discovery". Journal of Cellular Biochemistry (dalam bahasa Inggris). 121 (2): 898–929. doi:10.1002/jcb.29364. ISSN 0730-2312.
- ^ Qadir, Muhammad Imran; Bukhat, Sherien; Rasul, Sumaira; Manzoor, Hamid; Manzoor, Majid (2020-02). "RNA therapeutics: Identification of novel targets leading to drug discovery". Journal of Cellular Biochemistry (dalam bahasa Inggris). 121 (2): 898–929. doi:10.1002/jcb.29364. ISSN 0730-2312.
Pranala luar
- RNA World website Diarsipkan 2007-03-14 di Wayback Machine. Link collection (structures, sequences, tools, journals)
- Nucleic Acid Database Diarsipkan 2007-10-12 di Wayback Machine. Images of DNA, RNA and complexes.
Bagian dari seri |
Genetika |
---|
Komponen penting |
Sejarah dan topik |
Penelitan |
Pengobatan personal |
Pengobatan personal |