Aljabar linear

aljabar yang mempelajari sifat-sifat ruang vektor, termasuk matriks

Aljabar linear adalah bidang studi matematika yang mempelajari sistem persamaan linear dan solusinya, vektor, serta transformasi linear. Matriks dan operasinya juga merupakan hal yang berkaitan erat dengan bidang aljabar linear.

Persamaan Linear & Matriks

Persamaan linear dapat dinyatakan sebagai matriks. Misalnya persamaan:

3x1 + 4x2 − 2 x3 = 5
x1 − 5x2 + 2x3 = 7
2x1 + x2 − 3x3 = 9

dapat dinyatakan dalam matriks teraugmentasi sebagai berikut

 

Penyelesaian persamaan linier dalam bentuk matriks dapat dilakukan melalui beberapa cara, yaitu dengan eliminasi Gauss atau dapat juga dengan cara eliminasi Gauss-Jordan. Namun, suatu sistem persamaan linier dapat diselesaikan dengan eliminasi Gauss untuk mengubah bentuk matriks teraugmentasi ke dalam bentuk eselon-baris tanpa menyederhanakannya. Cara ini disebut dengan substitusi balik.

Sebuah sisitem persamaan linier dapat dikatakan homogen apabila mempunyai bentuk :

a11x1 + a12x2 + ... + a1nxn = 0
a21x1 + a22x2 + ... + a2nxn = 0
am1x1 + am2x2 + ... + amnxn = 0

Setiap sistem persamaan linier yang homogen bersifat adalah tetap apabila semua sistem mepunyai x1 = 0 , x2 = 0 , ... , xn = 0 sebagai penyelesaian. Penyelesaian ini disebut solusi trivial. Apabila mempunyai penyelesaian yang lain maka disebut solusi nontrivial.

Penyelesaian Persamaan Linear dengan Matriks


Bentuk Eselon-baris

Matriks dapat dikatakan Eselon-baris apabila memenuhi persyaratan berikut :

1.) Di setiap baris, angka pertama selain 0 harus 1 (leading 1).
2.) Jika ada baris yang semua elemennya nol, maka harus dikelompokkan di baris akhir dari matriks.
3.) Jika ada baris yang leading 1 maka leading 1 di bawahnya, angka 1-nya harus berada lebih kanan dari leading 1 di atasnya.
4.) Jika kolom yang memiliki leading 1 angka selain 1 adalah nol maka matriks tersebut disebut Eselon-baris tereduksi

Contoh: syarat 1: baris pertama disebut leading 1

 

syarat 2: baris ke-3 dan ke-4 memenuhi syarat 2

 

syarat 3: baris pertama dan ke-2 memenuhi syarat 3

 

syarat 4: matriks dibawah ini memenuhi syarat ke 4 dan disebut Eselon-baris tereduksi

   

Operasi Eliminasi Gauss

Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah dengan melakukan operasi baris sehingga matriks tersebut menjadi matriks yang Eselon-baris. Ini dapat digunakan sebagai salah satu metode penyelesaian persamaan linear dengan menggunakan matriks. Caranya dengan mengubah persamaan linear tersebut ke dalam matriks teraugmentasi dan mengoperasikannya. Setelah menjadi matriks Eselon-baris, lakukan substitusi balik untuk mendapatkan nilai dari variabel-variabel tersebut.

Contoh: Diketahui persamaan linear

 
 
 

Tentukan Nilai x, y dan z

Jawab:

Bentuk persamaan tersebut ke dalam matriks:

 

Operasikan Matriks tersebut

  Baris ke 2 dikurangi baris ke 1

  Baris ke 3 dikurangi 2 kali baris ke 1

  Baris ke 3 ditambah 3 kali baris ke 2

  Baris ke 3 dibagi dengan 3 (Matriks menjadi Eselon-baris)

Maka mendapatkan 3 persamaan linier baru yaitu

 
 
 

Kemudian lakukan substitusi balik maka didapatkan:

 
 
 
 
 
 

Jadi nilai dari   ,   ,dan  

Operasi Eliminasi Gauss-Jordan

Eliminasi Gauss-Jordan adalah pengembangan dari eliminasi Gauss yang hasilnya lebih sederhana. Caranya adalah dengan meneruskan operasi baris dari eliminasi Gauss sehingga menghasilkan matriks yang Eselon-baris tereduksi. Ini juga dapat digunakan sebagai salah satu metode penyelesaian persamaan linear dengan menggunakan matriks. Caranya dengan mengubah persamaan linear tersebut ke dalam matriks teraugmentasi dan mengoperasikannya. Setelah menjadi matriks Eselon-baris tereduksi, maka langsung dapat ditentukan nilai dari variabel-variabelnya tanpa substitusi balik.

Contoh: Diketahui persamaan linear

 
 
 

Tentukan Nilai x, y dan z

Jawab:

Bentuk persamaan tersebut ke dalam matriks:

 

Baris ke 2 dikurangi 2 kali baris ke 1

  Baris ke 3 dikurangi 2 kali baris ke 1

  Baris ke 3 dikurangi 3 kali baris ke 2

  Baris ke 3 dibagi 8 dan baris ke 2 dibagi -1

  Baris ke 2 dikurangi 4 kali baris ke 3

  Baris ke 1 dikurangi 3 kali baris ke 3

  Baris ke 1 dikurangi 2 kali baris ke 2 (Matriks menjadi Eselon-baris tereduksi)

Maka didapatkan nilai dari   ,   ,dan  

Operasi Dalam Matriks


Dua buah matriks dikatakan sama apabila matriks-matriks tersebut mempunyai ordo yang sama dan setiap elemen yang seletak sama.

Jika A dan B adalah matriks yang mempunyai ordo sama, maka penjumlahan dari A + B adalah matriks hasil dari penjumlahan elemen A dan B yang seletak. Begitu pula dengan hasil selisihnya. Matriks yang mempunyai ordo berbeda tidak dapat dijumlahkan atau dikurangkan.

Jumlah dari k buah matriks A adalah suatu matriks yang berordo sama dengan A dan besar tiap elemennya adalah k kali elemen A yang seletak. Didefinisikan: Jika k sebarang skalar maka kA = A k adalah matriks yang diperoleh dari A dengan cara mengalikan setiap elemennya dengan k. Negatif dari A atau -A adalah matriks yang diperoleh dari A dengan cara mengalikan semua elemennya dengan -1. Untuk setiap A berlaku A + (-A) = 0. Hukum yang berlaku dalam penjumlahan dan pengurangan matriks :

a.) A + B = B + A
b.) A + ( B + C ) = ( A + B ) + C
c.) k ( A + B ) = kA + kB = ( A + B ) k , k = skalar

Hasil kali matriks A yang ber-ordo m x p dengan matriks B yang berordo p x n dapat dituliskan sebagi matriks C = [ cij ] berordo m x n dimana cij = ai1 b1j + ai2 b2j + ... + aip bpj

Matriks Balikan (Invers)


JIka A dan B matriks bujur sangkar sedemikian rupa sehingga A B = B A = I , maka B disebut balikan atau invers dari A dan dapat dituliskan   ( B sama dengan invers A ). Matriks B juga mempunyai invers yaitu A maka dapat dituliskan  . Jika tidak ditemukan matriks B, maka A dikatakan matriks tunggal (singular). Jika matriks B dan C adalah invers dari A maka B = C.

Matriks A =   dapat di-invers apabila ad - bc ≠ 0

Dengan Rumus =

 

Apabila A dan B adalah matriks seordo dan memiliki balikan maka AB dapat di-invers dan  


Contoh 1:

Matriks

A =   dan B =  
AB =    =   = I (matriks identitas)
BA =    =   = I (matriks identitas)

Maka dapat dituliskan bahwa   (B Merupakan invers dari A)


Contoh 2:

Matriks

A =   dan B =  
AB =    =  
BA =    =  

Karena AB ≠ BA ≠ I maka matriks A dan matriks B disebut matriks tunggal.


Contoh 3:

Matriks

A =  

Tentukan Nilai dari A-1

Jawab:

 


Contoh 4:

Matriks

A =  , B =  , AB =  

Dengan menggunakan rumus, maka didapatkan

 ,  ,  

Maka

   =  

Ini membuktikan bahwa  

Transpose Matriks


Yang dimaksud dengan Transpose dari suatu matriks adalah mengubah komponen-komponen dalam matriks, dari yang baris menjadi kolom, dan yang kolom di ubah menjadi baris.

Contoh:

Matriks

A =   ditranspose menjadi AT =  


Matriks

B =   ditranspose menjadi BT =  


Rumus-rumus operasi Transpose sebagai berikut:

1.  
2.   dan  
3.   dimana k adalah skalar
4.  

Matriks Diagonal, Segitiga, dan Matriks Simetris


Matriks Diagonal

Sebuah matriks bujursangkar yang unsur-unsurnya berada di garis diagonal utama dari matriks bukan nol dan unsur lainnya adalah nol disebut dengan matriks diagonal. Contoh :

 

 

 

secara umum matriks n x n bisa ditulis sebagai

 


Matriks diagonal dapat dibalik dengan menggunakan rumus berikut :

 = 

 

jika D adalah matriks diagonal dan k adalah angka yang positif maka

 = 

Contoh :

A= 

maka

 = 


Matriks Segitiga

Matriks segitiga adalah matriks persegi yang di bawah atau di atas garis diagonal utama nol. Matriks segitiga bawah adalah matriks persegi yang di bawah garis diagonal utama nol. Matriks segitiga atas adalah matriks persegi yang di atas garis diagonal utama nol.

Matriks segitiga

 

Matriks segitiga bawah

 

Teorema

  • Transpos pada matriks segitiga bawah adalah matriks segitiga atas, dan transpose pada matriks segitiga atas adalah segitiga bawah.
  • Produk pada matriks segitiga bawah adalah matriks segitiga bawah, dan produk pada matriks segitiga atas adalah matriks segitiga atas.
  • Matriks segitiga bisa di-inverse jika hanya jika diagonalnya tidak ada yang nol.
  • Inverse pada matriks segitiga bawah adalah matriks segitiga bawah, dan inverse pada matriks segitiga atas adalah matriks segitiga atas.

Contoh :

Matriks segitiga yang bisa di invers

A = 

Inversnya adalah

 = 

Matriks yang tidak bisa di invers

B = 


Matriks Simetris

Matriks kotak A disebut simetris jika  

Contoh matriks simetris

 

 

Teorema

  • Jika A dan B adalah matriks simetris dengan ukuran yang sama, dan jika k adalah skalar maka

  adalah simetris A + B dan A - B adalah simetris kA adalah simetris  


Jika A adalah matriks simetris yang bisa di inverse, maka   adalah matriks simetris.

Asumsikan bahwa A adalah matriks simetris dan bisa di inverse, bahwa   maka :

 

Yang mana membuktikan bahwa   adalah simetris.


Produk   dan  

  dan  

Contoh

A adalah matriks 2 X 3

A =  

lalu

  =    =  


  =    =  

Jika A adalah Matriks yang bisa di inverse, maka   dan   juga bisa di inverse

Determinan

Determinan adalah suatu fungsi tertentu yang menghubungkan suatu bilangan real dengan suatu matriks bujursangkar.

Sebagai contoh, kita ambil matriks A2x2

A =   tentukan determinan A

untuk mencari determinan matrik A maka,

detA = ad - bc

Determinan dengan Ekspansi Kofaktor


Determinan dengan Minor dan kofaktor

A =   tentukan determinan A

Pertama buat minor dari a11

M11 =   = detM = a22a33 x a23a32

Kemudian kofaktor dari a11 adalah

c11 = (-1)1+1M11 = (-1)1+1a22a33 x a23a32

kofaktor dan minor hanya berbeda tanda Cij=±Mij untuk membedakan apakah kofaktor pada ij adalah + atau - maka kita bisa melihat matrik dibawah ini

 

Begitu juga dengan minor dari a32

M32 =   = detM = a11a23 x a13a21

Maka kofaktor dari a32 adalah

c32 = (-1)3+2M32 = (-1)3+2 x a11a23 x a13a21

Secara keseluruhan, definisi determinan ordo 3x3 adalah

det(A) = a11C11+a12C12+a13C13

Determinan dengan Ekspansi Kofaktor Pada Baris Pertama

Misalkan ada sebuah matriks A3x3

A =  

maka determinan dari matriks tersebut dengan ekspansi kofaktor adalah,

det(A) = a11  - a12  + a13 
= a11(a22a33 - a23a32) - a12(a21a33 - a23a31) + a13(a21a32 - a22a31)
= a11a22a33 + a12a23a31 + a13a21a32 - a13a22a31 - a12a21a33 - a11a23a32

Contoh Soal:

A =   tentukan determinan A dengan metode ekspansi kofaktor baris pertama

Jawab:

det(A) =   = 1  - 2  + 3  = 1(-3) - 2(-8) + 3(-7) = -8

Determinan dengan Ekspansi Kofaktor Pada Kolom Pertama

Pada dasarnya ekspansi kolom hampir sama dengan ekspansi baris seperti di atas. Tetapi ada satu hal yang membedakan keduanya yaitu faktor pengali. Pada ekspansi baris, kita mengalikan minor dengan komponen baris pertama. Sedangkan dengan ekspansi pada kolom pertama, kita mengalikan minor dengan kompone kolom pertama.

Misalkan ada sebuah matriks A3x3

A =  

maka determinan dari matriks tersebut dengan ekspansi kofaktor adalah,

det(A) = a11  - a21  + a31 
= a11(a22a33 - a23a32) - a21(a21a33 - a23a31) + a31(a21a32 - a22a31)
= a11a22a33 + a21a23a31 + a31a21a32 - a22(a31)2 - (a21)2a33 - a11a23a32

Contoh Soal:

A =   tentukan determinan A dengan metode ekspansi kofaktor kolom pertama

Jawab:

det(A) =   = 1  - 4  + 3  = 1(-3) - 4(-8) + 3(-7) = 8

Adjoin Matriks 3 x 3

Bila ada sebuah matriks A3x3

A =  

Kofaktor dari matriks A adalah

C11 = 12 C12 = 6 C13 = -16
C21 = 4 C22 = 2 C23 = 16
C31 = 12 C32 = -10 C33 = 16

maka matriks yang terbentuk dari kofaktor tersebut adalah

 

untuk mencari adjoint sebuah matriks, kita cukup mengganti kolom menjadi baris dan baris menjadi kolom

adj(A) =  

Determinan Matriks Segitiga Atas

Jika A adalah matriks segitiga nxn (segitiga atas, segitiga bawah atau segitiga diagonal) maka   adalah hasil kali diagonal matriks tersebut

 

Contoh

  = (2)(-3)(6)(9)(4) = -1296


Metode Cramer

jika Ax = b adalah sebuah sistem linear n yang tidak di ketahui dan det(A)≠ 0 maka persamaan tersebut mempunyai penyelesaian yang unik

 

dimana A j adalah matrik yang didapat dengan mengganti kolom j dengan matrik b

Contoh soal:

Gunakan metode cramer untuk menyelesaikan persoalan di bawah ini

x1 + x3 = 6
-3x1 + 4x2 + 6x3 = 30
-x1 - 2x2 + 3x3 = 8

Jawab:

bentuk matrik A dan b

A =   b =  

kemudian ganti kolom j dengan matrik b

A1 =   A2 =   A3 =  

dengan metode sarrus kita dapat dengan mudah mencari determinan dari matrik-matrik di atas

maka,

 
 
 

Tes Determinan untuk Invertibilitas

Pembuktian: Jika R di reduksi secara baris dari Ä. Sebagai langkah awal, kita akan menunjukkan bahwa det(A) dan det(R) keduanya adalah nol atau tidak nol: E1,E2,...,Er menjadi matrix element yang berhubungan dengan operasi baris yang menghasilkan Rdari A. Maka,

R=Er...E2 E1 A

dan,

det(R)=det(Er)...det(E2)det(E1)det(EA)

Jika A dapat di-invers, maka sesuai dengan teorema equivalent statements , maka R = I, jadi det(R) = 1 ≠ 0 dan det(A) ≠ 0. Sebaliknya, jika det(A) ≠ 0, maka det(R) ≠ 0, jadi R tidak memiliki baris yang nol. Sesuai dengan teorema R = I, maka A adalah dapat di-invers. Tapi jika matrix bujur sangkar dengan 2 baris/kolom yang proposional adalah tidak dapat diinvers.

Contoh Soal :

A= 

karena det(A) = 0. Maka A adalah dapat diinvers.

Mencari determinan dengan cara Sarrus

A =   tentukan determinan A

untuk mencari determinan matrik A maka,

detA = (aei + bfg + cdh) - (bdi + afh + ceg)

Metode Sarrus hanya untuk matrix berdimensi 3x3

Menghitung Inverse dari Matrix 3 x 3

A =  

kemudian hitung kofaktor dari matrix A
C11 = 12 C12 = 6 C13 = -16

C21 = 4 C22 = 2 C23 = 16

C31 = 12 C32 = -10 C33 = 16

menjadi matrix kofaktor

 

cari adjoint dari matrix kofaktor tadi dengan mentranspose matrix kofaktor diatas, sehingga menjadi

adj(A) =  

 

dengan metode Sarrus, kita dapat menghitung determinan dari matrix A

 

 

Sistem Linear Dalam Bentuk Ax = λx

dalam sistem aljabar linear sering ditemukan

      Ax = λx    ; dimana λ adalah skalar

sistem linear tersebut dapat juga ditulis dengan λx-Ax=0, atau dengan memasukkan matrix identitas menjadi

      (λI - A) x = 0

contoh:

diketahui persamaan linear

      x1 + 3x2 = λx1
     4x1 + 2x2 = λx2

dapat ditulis dalam bentuk

         = λ  

yang kemudian dapat diubah

A = dan x = 

yang kemudian dapat ditulis ulang menjadi

     λ  
     λ  
     Gagal mengurai (fungsi tak dikenal "\begin{bmatrix}"): {\displaystyle \begin{bmatrix} {λ}-1 & -3\\ -4 & {λ}-2\\ \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix}}

sehingga didapat bentuk

     λ I - A = Gagal mengurai (fungsi tak dikenal "\begin{bmatrix}"): {\displaystyle \begin{bmatrix} {λ}-1 & -3\\ -4 & {λ}-2\\ \end{bmatrix}}

namun untuk menemukan besar dari λ perlu dilakukan operasi

     detI - A) = 0  ;λ adalah eigenvalue dari A

dan dari contoh diperoleh

     detI - A) = Gagal mengurai (fungsi tak dikenal "\begin{bmatrix}"): {\displaystyle \begin{bmatrix} {{λ-1}} & -3\\ -4 & {{λ-2}}\\ \end{bmatrix}}
 = 0

atau λ^2 - 3λ - 10 = 0

dan dari hasil faktorisasi di dapat λ1 = -2 dan λ2 = 5

dengan memasukkan nilai λ pada persamaan (λ I - A) x = 0, maka eigenvector bisa didapat bila λ = -2 maka diperoleh

       

dengan mengasumsikan x2 = t maka didapat x1 = t

      x =  

Vektor dalam Ruang Euklide

Euklidian dalam n-Ruang


Vektor di dalam n-Ruang Definisi : Jika n adalah sebuah integer positif, sebuah n- grup topel adalah sekuens dari n bilangan real (a1.a2.....an). Set dari semua grup yang terdiri dari n- grup topel dinamakan n-ruangdan dituliskan sebagai Rn.

Jika n = 2 atau 3, sudah menjadi kebiasaan untuk menggunakan istilah grup pasangan dan grup dari tiga secara respektif, daripada 2-grup topel atau 3- grup topel. Keitka n = 1, setiap n – grup topel terdiri dari satu bilangan real, sehingga R1 bisa dilihat sebagai set dari bilangan real. Kita akan menuliskan R daripada R1 pada set ini.

Mungkin kita telah mmepelajari dalam bahan 3-ruang symbol dari (a1, a2, a3) mempunyai dua interpretasi geometris yang berbeda : ini bisa diinterpretasikan sebagai titik, yang dalam kasus ini a2, a2, a3 merupakan koordinat, atau ini bisa diinterpretasikan sebagai vector, dimana a1, a2, a3 merupakan komponen vector. Selanjutnya kita bisa melihat bahwa n – grup topel (a1, a2, ...., an) bisa dilihat sebagai antara sebuah “poin umum” atau “vector umum”- perbedaan antara keduanya tidak penting secara matematis. Dan juga kita bisa menjelaskan 5- topel (-2, 4, 0 ,1 ,6) antara poin dalam R5 atau vector pada R5.


u1 = v1 u2 = v2 un = vn

Penjumlahan u + v didefinisikan oleh


u + v = (u1 + v2, u2 + v2, ...., un + vn)

Dan jika k adalah konstanta scalar, maka perkalian scalar ku didefinisikan oleh


ku = (k u1, k u2,...,k un)

Operasi dari pertambahan dan perkalian scalar dalam definisi ini disebut operasi standar untuk Rn Vektor nol dalam Rn didenotasikan oleh 0 dan difenisikan ke vektor


0 = (0, 0,...., 0)

Jika u = (u1, u2, ...., un) dalam setiap vector dalam Rn, maka negative (atau invers aditif) dari u dituliskan oleh –u dan dijelaskan oleh


-u = (-u1, -u2, ...., -un)

Perbedaan dari vector dalam Rn dijelaskan oleh


v – u = v + (-u)

atau, dalam istilah komponen,


v – u = (v1-u1, v2-u2, ...., vn-un)

Sifat-sifat dari vektor dalam  

jika   ,   , dan   adalah vektor dalam   sedangkan k dan m adalah skalar, maka :

(a) u + v = v + u

(b) u + 0 = 0 + u = u

(c) u + (v + w) = (u + v) + w

(d) u + (-u) = 0 ; berarti, u - u = 0

(e) k (m u) = (k m) u

(f) k (u + v) = k u + k v

(g) (k + m) u = k u + m u

(h) 1u = u


Perkalian dot product   didefinisikan sebagai


 

Contoh Penggunaan Vektor dalam Ruang Dimensi Tinggi

  • Data Eksperimen – Ilmuwan melakukan experimen dan membuat n pengukuran numeris setiap eksperimen dilakukan. Hasil dari setiap experiment bisa disebut sebagai vector   dalam   dalam setiap   adalah nilai yang terukur.
  • Penyimpanan dan Gudang – Sebuah perusahaan transportasi mempunyai 15 depot untuk menyimpan dan mereparasi truknya. Pada setiap poin dalam waktu distribusi dari truk dalam depot bisa disebut sebagai 15-topel   dalam setiap   adalah jumlah truk dalam depot pertama dan   adalah jumlah pada depot kedua., dan seterusnya.
  • Rangkaian listrik – Chip prosesor didesain untuk menerima 4 tegangan input dan mengeluarkan 3 tegangan output. Tegangan input bisa ditulis sebagai vector dalam   dan tegangan output bisa ditulis sebagai . Lalu, chip bisa dilihat sebgai alat yang mengubah setiap vektor input   dalam   ke vector keluaran   dalam .
  • Analisis citra – Satu hal dalam gambaran warna dibuat oleh layar komputer dibuat oleh layar komputer dengan menyiapkan setiap [pixel] (sebuah titik yang mempunyai alamat dalam layar) 3 angka yang menjelaskan hue, saturasi, dan kecerahan dari pixel. Lalu sebuah gambaran warna yang komplit bisa diliahat sebgai 5-topel dari bentuk   dalam x dan y adalah kordinat layar dari pixel dan h,s,b adalah hue, saturation, dan brightness.
  • Ekonomi – Pendekatan kita dalam analisa ekonomi adalah untuk membagi ekonomidalam sector (manufaktur, pelayanan, utilitas, dan seterusnya ) dan untuk mengukur output dari setiap sector dengan nilai mata uang. Dalam ekonomi dengan 10 sektor output ekonomi dari semua ekonomi bisa direpresentasikan dngan 10-topel   dalam setiap angka   adalah output dari sektor individual.
  • Sistem Mekanis – Anggaplah ada 6 partikel yang bergerak dalam garis kordinat yang sama sehingga pada waktu t koordinat mereka adalah  dan kecepatan mereka adalah  . Informasi ini bisa direpresentasikan sebagai vector

  Dalam  . Vektor ini disebut kondisi dari sistem partikel pada waktu t.

  • Fisika - Pada teori benang komponen paling kecil dan tidak bisa dipecah dari Jagat raya bukanlah partikel tetapi loop yang berlaku seperti benang yang bergetar. Dimana jagat waktu Einstein adalah 4 dimensi, sedangkan benang ada dalam dunia 11-dimensi

Menemukan norm dan jarak


Menghitung Panjang vektor u dalam ruang  

jika u =  


Maka Panjang vektor u


 


dan Menghitung jarak antara vektor u dengan vektor v


 

Bentuk Newton

interpolasi polinominal p(x)=anxn+an-1xn-1+...+a1x+a0 adalah bentuk standar. Tetapi ada juga yang menggunakan bentuk lain . Contohnya , kita mencari interpolasi titik dari data (x0,y0),(x1,y1),(x2,y2),(x3,y3).

Jika kita tuliskan P(x)=a3x3+a2x2+a1x+a0

bentuk equivalentnya : p(x)=a3(x-x0)3+p(x)=a2(x-x0)2+p(x)=a1(x-x0)+a0

dari kondisi interpolasi p(x0)=yo maka didapatkan a0=yo , sehingga dapat kita tuliskan menjadi

p(x)=b3(x-x0)(x-x1)(x-x2)+b2(x-x0)(x-x1)+b1(x-x0)+b0 inilah yang disebut newton form dari interpolasi , sehingga kita dapatkan :

p(x0)=b0

p(x1)=b1h1+b0

p(x2)=b2(h1+h2)h2+b1(h1+h2)+b0

p(x3)=b3(h1+h2+h3)(h2+h3)h3+b2(h1+h2+h3)(h2+h3)+b1(h1+h2+h3)+b0

sehingga jika kita tuliskan dalam bentuk matrix:

Operator Refleksi

Berdasarkan operator T:R2 -> R2 yang memetakan tiap vektor dalam gambaran simetris terhadap sumbu y, dimisalkan w=T(x), maka persamaan yang berhubungan dengan x dan w adalah:

x1 = -x = -x + 0y

x2 = y = 0x + y

atau dalam bentuk matrik :  

Secara umum, operator pada R2 dan R3 yang memetakan tiap vektor pada gambaran simetrinya terhadap beberapa garis atau bidang datar dinamakan operator refleksi. Operator ini bersifat linier.


Operator Proyeksi

Berdasarkan operator T:R2 -> R2 yang memetakan tiap vektor dalam proyeksi tegak lurus terhadap sumbu x, dimisalkan w=T(x), maka persamaan yang berhubungan dengan x dan w adalah:

x1 = x = x + 0y

x2 = 0 = 0x + y

atau dalam bentuk matrik :  

Persamaan tersebut bersifat linier, maka T merupakan operator linier dan matrikx T adalah:  

Secara umum, sebuah operator proyeksi pada R2 dan R3 merupakan operator yang memetakan tiap vektor dalam proyeksi ortogonal pada sebuah garis atau bidang melalui asalnya.


Operator Rotasi

Sebuah operator yang merotasi tiap vektor dalam R2 melalui sudut ɵ disebut operator rotasi pada R2. Untuk melihat bagaimana asalnya adalah dengan melihat operator rotasi yang memutar tiap vektor searah jarum jam melalui sudut ɵ positif yang tetap. Unutk menemukan persamaan hubungan x dan w=T(x), dimisalkan ɵ adalah sudut dari sumbu x positif ke x dan r adalah jarak x dan w. Lalu, dari rumus trigonometri dasar x = r cos Θ ; y = r cos Θ dan w1 = r cos (ɵ + ɸ) ; w2= r sin (ɵ + ɸ)

Menggunakan identitas trigonometri didapat:

w1 = r cos ɵ cos ɸ - r sin ɵ sin ɸ

w2 = r sin ɵ cos ɸ + r cos ɵ sin ɸ

kemudian disubtitusi sehingga:

w1 = x cos Θ - y sin Θ

w2 = x sin Θ + y cos Θ

Persamaan diatas merupakan persamaan linier, maka T merupakan operator linier sehingga bentuk matrik dari persamaan diatas adalah:  

Interpolasi Polinomial


Dengan menganggap masalah pada interpolasi polinomial untuk deret n + 1 di titik (x0,y0)...., (xn,yn). Maka, kita diminta untuk menemukan kurva p(x) = am  + am-1  + ... + a1x + a0 dari sudut minimum yang melewati setiap dari titik data. Kurva ini harus memenuhi


 


karena xi diketahui, ini akan menuju pada sistem matrik di bawah ini


   =  


Ingat bahwa ini merupakan sistem persegi dimana n = m. Dengan menganggap n = m memberikan sistem di bawah ini untuk koefisien interpolasi polinomial p(x):


   =   (1)


Matrix di atas diketahui sebagai Matrix Vandermonde; kolom j merupakan elemen pangkat j-1. Sistem linier pada (1) disebut menjadi Sistem Vandermonde.


Contoh soal:

Cari interpolasi polinomial pada data (-1,0),(0,0),(1,0),(2,6) menggunakan Sistem Vandermonde.

Jawab:

Bentuk Sistem Vandermonde(1):

   =  


Untuk data di atas, kita mempunyai


   =  


 


Untuk mendapatkan solusinya, digunakan Gaussian Elimination

  Baris ke-2, ke-3, dan ke-4 dikurangi baris pertama


  Baris ke-3 dibagi dengan 2, sedangkan baris ke-4 dibagi dengan 3


  Baris ke-3 dikurangi baris ke-2


  Baris ke-4 dikurangi baris ke-2


  Baris ke-4 dibagi dengan 2


  Baris ke-4 dikurangi baris ke-3

Didapatkan persamaan linier dari persamaan matrix di atas

 


Jadi, interpolasinya adalah